IPCC AR6報告解讀:氣候變化與人類健康
引言
2022年2月28日IPCC發(fā)布第六次評估報告(AR6)第二工作組(WGII)報告《氣候變化:影響、適應(yīng)和脆弱性》[1],評估了氣候變化在全球和區(qū)域?qū)用鎸ι鷳B(tài)系統(tǒng)、生物多樣性和人類社會的當(dāng)前影響以及未來風(fēng)險,審查了自然界和人類社會在氣候變化下的脆弱性、適應(yīng)能力和局限性。該報告共有18章,其中第7章題為“健康、福祉和不斷變化的社區(qū)結(jié)構(gòu)”,是基于IPCC第五次評估報告(AR5)[2]進行迭代更新,涵蓋了第11章(人類健康:影響、適應(yīng)和共同利益)、第12.4節(jié)(從移民和人口流動層面審視人類安全)、第12.5節(jié)(氣候變化和武裝沖突)和第12.6節(jié)(國家完整和地緣政治競爭)的所有內(nèi)容。
該章主要涵蓋的內(nèi)容包括:(1)綜合考慮脆弱性、人口和社區(qū)的動態(tài)結(jié)構(gòu)等因素,評估氣候變化對健康、福祉、移民和沖突的影響;(2)科學(xué)界充分審視了基于氣候變化情景分析的未來風(fēng)險;(3)提出應(yīng)對氣候變化風(fēng)險可能需要特別關(guān)注的是適應(yīng)性挑戰(zhàn)、解決方案以及發(fā)展路徑。文中主要針對該報告第7章關(guān)于氣候變化對人類健康影響的主要內(nèi)容和評估結(jié)論進行解讀,為中國科學(xué)界和政策制定者充分理解氣候變化對健康的影響機制、未來風(fēng)險以及適應(yīng)策略提供參考。
1 已觀測到氣候變化對人類健康的影響
全球氣候變化可通過一系列復(fù)雜的過程影響人類健康,其主要途徑包括通過極端天氣氣候事件或不利氣象條件直接影響健康,如高溫和洪澇等導(dǎo)致過早死亡或誘發(fā)疾病;或者通過間接途徑如造成病媒生物時空分布變化、環(huán)境污染、糧食短缺等方式影響人類健康,使人類罹患傳染病、非傳染性疾病和其他氣候敏感疾病,甚至產(chǎn)生心理壓力或精神疾病。
1.1 對傳染病的影響
氣候變化是影響傳染病發(fā)生的重要因素,其直接或間接地影響傳染病的病原體、媒介生物、宿主以及易感人群,進而改變傳染病流行的模式、頻率和強度。全球氣候變暖會使登革熱、瘧疾等蟲媒傳染病的媒介能力得到增強,發(fā)病例數(shù)呈上升趨勢,地理分布范圍(甚至在高海拔地區(qū))呈擴大趨勢[3]。媒介生物傳染病的傳播率直接受氣候和氣象因素的影響(如溫度、濕度和降水等),這些氣候變量被認(rèn)為是歐洲東南部西尼羅熱傳播的重要驅(qū)動因素;在越南等地的研究發(fā)現(xiàn),溫度及相對濕度與登革熱的傳播率呈正相關(guān)關(guān)系[4]。由氣候變化導(dǎo)致的溫度升高使加拿大地區(qū)萊姆病的傳染數(shù)最大可增加5倍[5]。同時,不斷變化的氣候正在促進基孔肯雅病毒、寨卡病毒、日本腦炎病毒和裂谷熱病毒在亞洲、拉丁美洲、北美洲和歐洲的傳播。在中國,過去半個世紀(jì)登革熱傳播的氣候適宜性已增加37%[6]。
攝入含有病原微生物污染的飲用水或食物是導(dǎo)致水源性疾病和食源性疾病的主要原因。自AR5以來,越來越多證據(jù)表明高溫、暴雨、洪水和干旱等極端天氣氣候事件通過直接或間接途徑影響水源性和食源性疾病的發(fā)生,并產(chǎn)生級聯(lián)風(fēng)險,如2016年安徽洪水受災(zāi)地區(qū)在洪水發(fā)生后感染性腹瀉的發(fā)生風(fēng)險增加11%[7-8]。長時間的強降水不僅會沖刷環(huán)境中的病原體、污染飲用水,也會造成基礎(chǔ)設(shè)施薄弱地區(qū)的供水系統(tǒng)和衛(wèi)生管道系統(tǒng)出現(xiàn)過載或破壞現(xiàn)象,進而導(dǎo)致感染性腹瀉的發(fā)生[9]。溫度升高會導(dǎo)致食源性傳染病的風(fēng)險增加,在香港地區(qū),氣溫30.5℃時沙門氏菌入院治療風(fēng)險是氣溫13℃時的6.13倍;空腸彎曲桿菌導(dǎo)致的食源性疾病發(fā)生率在降雨期后明顯下降[10]。此外,食源性疾病風(fēng)險也與從生產(chǎn)到消費的整個食物鏈、城市化和人口增長、農(nóng)業(yè)生產(chǎn)力下降、食物價格波動、飲食趨勢的改變等因素有關(guān)。
呼吸道傳染病的氣候風(fēng)險因素主要包括由氣候變化加劇的極端溫度和濕度、沙塵暴、極端降水事件。迄今為止,呼吸道傳染病如肺炎和流感與氣候環(huán)境的關(guān)聯(lián)研究存在顯著的空間異質(zhì)性,如Lam等[11]研究了各種J型、U型或V型溫度-肺炎關(guān)系,但目前仍難以從定量角度衡量呼吸道傳染病的流行多大程度歸因于氣候因素。也有少量研究發(fā)現(xiàn)了干旱和缺水等對其他傳染?。ㄈ缟逞鄣龋┐嬖陲L(fēng)險,但缺乏足夠的研究證據(jù)。
1.2 對非傳染性疾病的影響
非傳染性疾病是由遺傳、環(huán)境和行為方式等因素共同作用的結(jié)果,是全球最主要的疾病負(fù)擔(dān)。心腦血管疾病包括冠心病、腦血管病、外周動脈疾病、風(fēng)濕性心臟病、先天性心臟病等,世界上3/4的心腦血管疾病死亡都發(fā)生在中低收入國家,是全球死亡的主要原因。氣候變化通過影響高溫天氣,導(dǎo)致體力活動減少、脫水和睡眠障礙等問題,從而增加了心腦血管疾病風(fēng)險,而暴露于顆粒物、臭氧等空氣污染物會引起炎癥、血栓狀態(tài)、內(nèi)皮功能障礙和高血壓等[12]。值得注意的是,空氣污染與氣象條件對心腦血管疾病的健康效應(yīng)十分復(fù)雜,例如冷季和暖季的臭氧濃度對血栓和高血壓等疾病的風(fēng)險存在顯著差異[13],但復(fù)合暴露的健康影響尚需進一步研究。
非傳染性呼吸道疾病主要包括哮喘、慢性阻塞性肺病和肺癌,由于其風(fēng)險因素的暴露途徑和暴露時間受環(huán)境影響較大而對氣候變化非常敏感[14]。AR6報告顯示,2019年非傳染性肺病占全球死亡人數(shù)的10.6%,傷殘調(diào)整壽命年①占5.9%[1]。氣候變化相關(guān)的環(huán)境因素是過敏性呼吸道疾病的主要驅(qū)動因素,如灰塵、空氣污染物、荒野火災(zāi)和熱暴露等增加了空氣中過敏原的濃度并延長了暴露時間,從而損壞人體肺功能。氣候變化延長了花粉季節(jié)持續(xù)時間并增加了花粉致敏性,造成春季哮喘發(fā)作風(fēng)險的增加,其中老人和城市人口是主要易感人群。因此,鼻炎和哮喘等過敏性呼吸道疾病的社會負(fù)擔(dān)預(yù)計會隨著氣候變化的影響而持續(xù)增加。
氣候變化通過影響與致癌有關(guān)的化學(xué)危害物質(zhì)的暴露途徑,增加人類罹患惡性腫瘤的風(fēng)險,但風(fēng)險程度尚不明確。惡性腫瘤在全球造成巨大的疾病負(fù)擔(dān),2019年全球死亡人數(shù)略高于1000萬,傷殘調(diào)整生命年數(shù)為2.51億[1]。氣候變化可通過改變致癌多芳香烴的運輸過程和其他致癌毒素分布情況,使致癌物質(zhì)暴露于多種環(huán)境介質(zhì),增加癌癥風(fēng)險。極端天氣氣候事件和不斷上升的溫度也會增加糖尿病患者(尤其是心腦血管疾病合并癥患者)的發(fā)病率和死亡率。極端天氣氣候事件對慢性病患者的健康影響是由一系列復(fù)雜因素造成的,例如由于治療中斷和無法獲得藥物,慢性病患者在極端天氣氣候事件期間及之后均面臨較高的健康風(fēng)險。
1.3 對精神心理健康的影響
系統(tǒng)評估精神心理健康和氣候變化的關(guān)系是AR6報告的重要新增內(nèi)容,其影響機制復(fù)雜(圖1),主要與個體指標(biāo)(如經(jīng)濟收入、勞動能力、健康狀況)和環(huán)境衛(wèi)生(如空氣污染、水污染、綠地)等影響因素有關(guān)。
圖1
圖1 氣候變化對心理健康的影響
注:本圖改繪自AR6 WGII報告第7章第7.2.5節(jié)的圖7.6。
Fig. 1 Climate change impacts on mental health
已觀察到的極端天氣氣候事件會對心理健康產(chǎn)生不利影響,并與其他的非氣候因素相互作用。高溫暴露與一系列不良心理健康結(jié)局(如自殺、精神疾病的住院和急診、焦慮、抑郁和急性應(yīng)激等)呈正相關(guān)關(guān)系[15],例如,在美國月平均氣溫>30℃時心理健康問題就診增加約0.5%;月最高氣溫每上升1℃心理健康問題就診增加約2%[16],而墨西哥和美國的自殺率分別增加2.1%和0.7%[17]。風(fēng)暴、洪水、熱浪、野火和干旱等極端天氣氣候事件對受災(zāi)居民的心理健康具有顯著影響,表現(xiàn)為創(chuàng)傷后應(yīng)激障礙、焦慮、失眠、藥物濫用和抑郁等[18]。例如,美國最嚴(yán)重災(zāi)害之一的卡特里娜颶風(fēng)造成災(zāi)區(qū)居民精神健康問題增加約4%,20%~30%經(jīng)歷過自然災(zāi)害的人在事件發(fā)生后的幾個月內(nèi)患上抑郁癥或創(chuàng)傷后應(yīng)激障礙[16,19];而氣候變化對經(jīng)濟、社會和糧食系統(tǒng)的影響也可能波及到心理健康。此外,即使沒有受到氣候變化的直接影響,人們對氣候變化潛在風(fēng)險的感知也會影響心理健康[20],且直接經(jīng)歷過極端天氣氣候事件的居民、兒童和青少年更加敏感。
研究表明,氣候變化已經(jīng)對人群的主觀幸福感產(chǎn)生了負(fù)面影響。具體而言,氣候變化通過炎熱天氣和空氣污染等途徑,降低個體正常行為或社交模式的幸福感,極端高溫還與人際間和群體間的攻擊以及暴力犯罪的增加有關(guān)。美國的大規(guī)模人群研究發(fā)現(xiàn),相對于10~16℃,人們暴露于21~27℃和>32℃時幸福感會下降1.6%和4.4%[21];在中國日均溫度≥20℃時,人們情緒開始變差[22]。風(fēng)暴、海岸侵蝕、干旱或野火等事件通過破壞綠地和海洋等空間或當(dāng)?shù)赜袃r值景觀,使居民產(chǎn)生如悲傷、憂郁等負(fù)面情緒[23]。此外,氣候變化還會威脅到勞動生產(chǎn)率、認(rèn)知和學(xué)習(xí)能力,從而影響職業(yè)人群和青少年的主觀幸福感。
1.4 對其他氣候敏感疾病的影響
氣候變化下的熱浪、洪澇、干旱、野火等極端事件頻發(fā)會顯著增加人群死亡和發(fā)病風(fēng)險,據(jù)估計,1998—2017年,1.15萬起極端天氣氣候事件導(dǎo)致了52.6萬人死亡,在受影響最嚴(yán)重的10個國家中,年均歸因全因死亡率為3.5人/10萬人[24]。其中,戶外勞動者、孕產(chǎn)婦、新生兒、老年人等屬于脆弱人群。高溫天氣會使機體發(fā)生脫水、腎功能減退、腦功能減退等不良反應(yīng)和健康損害,并增加中暑、勞累型熱射病等熱相關(guān)疾病的風(fēng)險,嚴(yán)重威脅職業(yè)人群的健康[25],同時也會降低職業(yè)人群勞動能力和生產(chǎn)效率,造成工作時間和生產(chǎn)力損失,增加社會經(jīng)濟負(fù)擔(dān)[6]。一項全球?qū)用娴脑u估指出,2000—2018年間,由于高溫而損失的潛在工作時間有所增加,2018年潛在工作時間損失了1336億h,比2000年增加了450億h[26]。對中國而言,2019年與熱相關(guān)的生產(chǎn)力損失估計為99億h,相當(dāng)于當(dāng)年全國總工作時間的0.5%,其中廣東省損失占全國近1/4[6]。此外,孕產(chǎn)婦由于懷孕期間生理功能發(fā)生了一系列改變,如體溫調(diào)節(jié)能力下降,因此孕期暴露于極端溫度使得發(fā)生早產(chǎn)、低出生體重、死產(chǎn)等不良孕產(chǎn)結(jié)局的風(fēng)險明顯增加[27],并對子代健康(新生兒及兒童)造成持續(xù)且嚴(yán)重的損害。
在全球范圍內(nèi),氣候變化與極端事件還會影響糧食安全,主要表現(xiàn)在糧食生產(chǎn)供應(yīng)的穩(wěn)定性、糧食獲取以及利用等方面,從而使?fàn)I養(yǎng)不足、超重和肥胖等營養(yǎng)不良問題日益嚴(yán)峻,并使人群對其他疾病的易感性大幅增加,尤其對中低收入國家的孕產(chǎn)婦及兒童的影響更明顯[28]。此外,氣候變化還對北極生態(tài)系統(tǒng)造成深遠(yuǎn)影響,使多年凍土融化釋放大量汞,并加劇汞的甲基化過程。甲基汞沿著細(xì)菌、浮游生物、大型無脊椎動物、草食性魚類、肉食性魚類的食物鏈富集,通過生物放大作用,最終反饋給食用者,從而對人類尤其是當(dāng)?shù)鼐用竦慕】翟斐蓢?yán)重危害[29]。
2 氣候變化對人類健康影響的未來風(fēng)險預(yù)估
目前的研究主要是根據(jù)多個典型濃度路徑(RCPs)或共享社會經(jīng)濟路徑(SSPs)/RCPs的組合情景,預(yù)估具有氣候敏感疾病的未來風(fēng)險。氣候變化將顯著增加一系列氣候敏感疾病的健康風(fēng)險,尤其是在高排放情景下造成的人群疾病或死亡風(fēng)險最大,但風(fēng)險程度取決于未來幾十年的排放情況、人口增長、經(jīng)濟發(fā)展和適應(yīng)行動等關(guān)鍵性因素。
2.1 對傳染病影響的未來預(yù)估
攜帶病原體的病媒生物地理分布和數(shù)量變化,將受到未來氣候變化的極大影響。撒哈拉以南非洲、亞洲和南美洲部分地區(qū)瘧疾媒介按蚊的分布范圍和傳播能力將隨著氣溫上升而增加,預(yù)計到2070年,南美洲瘧疾媒介按蚊的分布范圍將擴大到該大陸面積的35%~46%。氣溫上升還可能會導(dǎo)致病媒生物的適宜生境向極地移動,在RCP2.6和RCP8.5情景下,埃及伊蚊數(shù)量將分別增加20%和30%。在RCP6.0情景下,到2050年全球?qū)⒂幸话氲娜丝诒┞队诎<耙廖煤桶准y伊蚊,會進一步加劇登革熱的傳播風(fēng)險[30]。在SSP1-4.5、SSP2-6.0和SSP3-8.5情景下,全球預(yù)計分別有10億、22.5億和50億人面臨登革熱的暴露風(fēng)險[31]。氣候變化還將繼續(xù)擴大萊姆病媒介肩胛骨硬蜱的地理分布范圍,促進萊姆病在歐洲的傳播。非洲和亞洲血吸蟲宿主釘螺的分布也會受氣候變化影響,如東非大部分地區(qū)未來20~50年間的曼氏血吸蟲人群感染風(fēng)險將增加20%[32]。
感染性腹瀉的流行風(fēng)險將在很大程度上受到未來社會經(jīng)濟和適應(yīng)水平的影響。由于社會經(jīng)濟發(fā)展,腹瀉造成的死亡人數(shù)可能下降,但若不采取氣候適應(yīng)措施,總死亡人數(shù)仍將不斷增加。在高排放情景下,2030年和2050年腹瀉導(dǎo)致15歲以下兒童死亡人數(shù)將分別增加4.8萬人和3.3萬人(尤其在非洲和東南亞地區(qū))。此外,對于未來預(yù)計強降水或洪水事件增加的地區(qū),空腸彎曲桿菌病和其他腸道病原體的傳播風(fēng)險也可能上升,如RCP8.5情景下,隱孢子蟲病和賈第鞭毛蟲病的發(fā)病率將在2080年上升約16%[33]。隨著未來氣溫的升高,食源性傳染病的風(fēng)險也會增加,在RCP8.5情景下,預(yù)計在2100年歐洲與溫度相關(guān)的沙門氏菌病年均病例數(shù)比僅考慮人口變化的病例數(shù)增加50%[34]。
2.2 對非傳染性疾病影響的未來預(yù)估
氣候變化所致的極端溫度或復(fù)合暴露事件能夠引起多種類型的非傳染性疾病風(fēng)險增加。前者的影響具有較大的空間異質(zhì)性,主要是由氣候差異、人口數(shù)量、經(jīng)濟水平等多個因素決定。例如在亞熱帶氣候區(qū)的研究發(fā)現(xiàn),RCP8.5情景下,到21世紀(jì)70年代,心腦血管疾病與熱相關(guān)的壽命損失相較于基線水平將增加200%,而與冷相關(guān)的壽命損失則降低30%,未來數(shù)十年每年心腦血管疾病壽命凈損失呈現(xiàn)出下降趨勢?;诖箨懶詺夂騾^(qū)的研究發(fā)現(xiàn),由于大量人群適應(yīng)氣候變化帶來的升溫環(huán)境,與熱相關(guān)的心腦血管疾病死亡人數(shù)預(yù)計會有所減少,但仍高于歷史基線期(2007—2009年),而由于人群適應(yīng)了更高的溫度,預(yù)計導(dǎo)致與冷相關(guān)的心腦血管疾病死亡人數(shù)將增加[35]。
在城市化和氣候變化的雙重作用下,極端溫度復(fù)合事件中的日夜持續(xù)型高溫暴露將在全球多個地區(qū)以更高的頻率和強度發(fā)生[36]。但目前有關(guān)復(fù)合極端溫度暴露的研究主要關(guān)注于日夜持續(xù)型高溫事件在全球的分布及其驅(qū)動因素,并沒有將重點放在對人群健康的影響上。僅有少數(shù)研究對氣候變化情景下復(fù)合極端溫度暴露健康影響進行了分析。在中國深圳的研究顯示,1.5℃升溫情景與2℃升溫情景相比,預(yù)計到21世紀(jì)中期和末期,泌尿系統(tǒng)疾病的歸因急救人數(shù)將分別增加38%和52%,其次為酒精中毒患者,分別增加20%和36%[37]。
2.3 對精神心理健康影響的未來預(yù)估
未來氣候變化模式將以多種方式擾亂人類行為和社會生態(tài)系統(tǒng),進而威脅到人群的精神心理健康狀況。目前AR6報告主要從定性角度評估未來風(fēng)險,預(yù)計因氣候變化導(dǎo)致的極端事件(洪水、干旱和颶風(fēng)等)增加,會降低幸福感,影響人類心理健康。撒哈拉以南地區(qū)非洲兒童和青少年(尤其是女孩)的心理健康和幸福感更容易受到負(fù)面影響[38];患有精神障礙、身體殘疾以及呼吸、心腦血管和生殖系統(tǒng)受損的人,受到氣候變化帶來直接影響的風(fēng)險最大,并會受到饑荒和營養(yǎng)不良、衛(wèi)生和社會系統(tǒng)的破壞等與氣候變化相關(guān)的經(jīng)濟和社會問題的間接影響;氣候變化可能改變?nèi)祟惢顒幽J?進而引起心理健康狀況的改變,也可通過高溫?fù)p害勞動能力以及認(rèn)知功能[39],影響個體家庭和社會經(jīng)濟狀況,對精神心理健康造成嚴(yán)重威脅。此外,氣候變化造成的人口遷移、流離失所、政治動蕩、糧食安全問題等可能加劇未來的心理健康損害。
2.4 對其他氣候敏感疾病影響的未來預(yù)估
基于不同地理區(qū)域以及不同SSPs/RCPs情景組合下的預(yù)估結(jié)果顯示,全球未來人口的高溫暴露度將進一步增加。在高人口增長、高排放的SSP3-8.5情景下,人口高溫暴露度增幅最大,全球未來暴露于高溫?zé)崂说娜丝趯漠?dāng)前的約1500億人?d增加到5350億人?d[40]。暴露度主要受熱浪發(fā)生頻率和人口增長趨勢的空間差異影響,在地理區(qū)域間呈現(xiàn)巨大反差。預(yù)計在東亞尤其中國東部地區(qū),熱浪頻率增加的影響將抵消人口減少的影響,使人群熱浪暴露度在未來持續(xù)增加,特別是在非城市地區(qū)這一現(xiàn)象尤為明顯。由于全球升溫,未來北半球國家的冷相關(guān)死亡率預(yù)計有所下降,而南半球氣候溫暖的國家預(yù)計到21世紀(jì)末熱相關(guān)的死亡人數(shù)會有較大增加。
氣候變化將進一步加劇兒童營養(yǎng)不良的發(fā)生率。在RCP2.6情景下,到2030年全球44個國家5歲以下兒童中度和重度發(fā)育遲緩預(yù)計將增加57萬例[41]。氣候變化導(dǎo)致的干旱、洪水、風(fēng)暴、野火和極端溫度,通過減少土壤營養(yǎng)、水安全,以及造成生物和遺傳多樣性喪失等途徑,降低糧食生產(chǎn)潛力。預(yù)計到2050年,與氣候相關(guān)的食物尤其是水果和蔬菜供應(yīng)量的減少可能導(dǎo)致每年52.9萬人的超額死亡[42]。在化學(xué)污染物暴露方面,氣候變化可能會改變區(qū)域和地方對人為化學(xué)污染物的暴露,海產(chǎn)品被海洋毒素污染的風(fēng)險將會增加,真菌毒素和黃曲霉毒素可能變得更加流行。
3 應(yīng)對氣候變化健康風(fēng)險的適應(yīng)策略
應(yīng)對氣候變化健康風(fēng)險的適應(yīng)策略和解決方案,是為了應(yīng)對已經(jīng)觀測到的或預(yù)期發(fā)生的氣候變化與極端事件,而提出的減少人類健康風(fēng)險或增強氣候恢復(fù)力的短期和長期策略與方案,是AR6報告的重點內(nèi)容。通過積極、及時和有效的氣候變化適應(yīng),可以減少或避免氣候變化給人類健康、福祉以及衛(wèi)生系統(tǒng)造成的風(fēng)險[43]。因此,既需要將氣候變化適應(yīng)納入戰(zhàn)略規(guī)劃、付諸行動和采取具體措施,也需要綜合考慮減排措施的健康協(xié)同效益,加大投資力度、減少碳排放、建立具有氣候恢復(fù)力和環(huán)境友好的衛(wèi)生系統(tǒng)及醫(yī)療設(shè)施。
在制定規(guī)劃和措施的過程中,重點內(nèi)容應(yīng)該包括:將氣候變化納入健康政策、建立氣候變化應(yīng)急準(zhǔn)備措施、完善健康信息系統(tǒng),如氣候健康風(fēng)險監(jiān)測和早期預(yù)警系統(tǒng)、脆弱性評估等;結(jié)合疾病病因/病媒生物、社會經(jīng)濟、環(huán)境條件等各種因素,制定、改進和不斷完善氣候變化健康風(fēng)險的監(jiān)測預(yù)測、早期預(yù)警和干預(yù)措施,如改善飲用水、正確處置排泄物與廢水等;應(yīng)對熱相關(guān)疾病及過早死亡,除空調(diào)等降溫措施和高溫預(yù)警外,還應(yīng)考慮通過城市規(guī)劃和建筑設(shè)計等措施以應(yīng)對高溫的長期風(fēng)險[44];制定氣候變化或極端天氣對心理健康風(fēng)險的預(yù)防策略、適應(yīng)方案及災(zāi)后應(yīng)急響應(yīng),如洪水后的臨時避難所有助于緩解流離失所者的焦慮等[18]。此外,氣候變化適應(yīng)策略還包括開發(fā)有效的健康風(fēng)險預(yù)測方法、制定改善空氣質(zhì)量的措施,以及將災(zāi)害風(fēng)險管理納入公共衛(wèi)生實踐等方面的工作。
在具體的應(yīng)對行動過程中,基于綜合權(quán)衡能源安全、空氣質(zhì)量、社會經(jīng)濟、生態(tài)系統(tǒng)等其他社會目標(biāo),通過優(yōu)化能源結(jié)構(gòu)、減少溫室氣體排放[45-46]、投資基礎(chǔ)設(shè)施建設(shè)、加快城市公共交通網(wǎng)絡(luò)、改善農(nóng)業(yè)可持續(xù)生產(chǎn)等途徑采取氣候行動,實現(xiàn)可持續(xù)發(fā)展目標(biāo)[47],同時會產(chǎn)生巨大的健康協(xié)同效益。另一方面,需加大對基礎(chǔ)設(shè)施的投資,包括衛(wèi)生設(shè)施、安全飲用水、清潔電力等,提高對氣候變化的適應(yīng)能力,降低氣候相關(guān)風(fēng)險的脆弱性。因此,在減緩氣候變化的同時,也為改善人類健康和福祉、促進社會公平提供了重要機會。AR6報告也提出促進可持續(xù)發(fā)展,實現(xiàn)低碳、繁榮和生態(tài)安全的氣候恢復(fù)力發(fā)展路徑(CRDP)的重要性。對于醫(yī)療衛(wèi)生服務(wù)系統(tǒng),一方面要提高適應(yīng)和規(guī)劃能力,努力實現(xiàn)全民健康覆蓋,在氣候變化背景下保護并持續(xù)改善人群健康;另一方面,醫(yī)療衛(wèi)生系統(tǒng)作為碳排放的主要來源之一,需要對當(dāng)前的服務(wù)模式進行重新設(shè)計,衛(wèi)生從業(yè)者也應(yīng)積極參與到這一過程中[48],減少碳足跡,爭取實現(xiàn)醫(yī)療衛(wèi)生系統(tǒng)和服務(wù)提供過程的溫室氣體凈零排放,以減緩氣候變化并減少與溫室氣體排放相關(guān)的疾病負(fù)擔(dān)[49-50]。此外,對于非醫(yī)療衛(wèi)生系統(tǒng),則應(yīng)更廣泛地實現(xiàn)可持續(xù)發(fā)展目標(biāo),通過跨部門合作制定促進健康的政策,以解決人類健康和福祉的上游決定因素。
4 主要評估結(jié)論
AR5報告已經(jīng)明確指出人類健康對氣候變化非常敏感,而這一觀點在AR6報告中得以強化。氣候變化對氣候敏感疾病、過早死亡、營養(yǎng)不良,以及對精神心理健康、積極情緒、生活滿意度的威脅正在增加(很高可信度),尤其是兒童、老人、婦女、殘疾人等更易受到氣候變化的影響。此外,在所有人類居住的地區(qū),都已觀測到極端天氣氣候事件對人群健康造成的級聯(lián)風(fēng)險(很高可信度),并在不同的時間和空間上存在差異??茖W(xué)界仍面臨一些挑戰(zhàn):(1)如何更好地量化除自然因素外的人為因素驅(qū)動的氣候變化導(dǎo)致的健康影響;(2)在推進公共衛(wèi)生和氣候變化的國家政策制定過程中,需加強相關(guān)制度設(shè)計的全面性和戰(zhàn)略規(guī)劃的整體性,特別是在實施公共衛(wèi)生和氣候變化戰(zhàn)略中一些關(guān)鍵行動的具體推進。
氣候變化對未來健康風(fēng)險的影響程度受多方面因素調(diào)節(jié),包括未來的溫室氣體排放量、人口增長和遷移、城市化進程、土地利用、生物多樣性、公共衛(wèi)生策略與措施,以及氣候變化適應(yīng)能力等。在缺少足夠的氣候變化適應(yīng)措施的情況下,預(yù)計氣候敏感疾病發(fā)生率和過早死亡人數(shù)將會顯著增加(高可信度),到2050年,每年將有超過25萬人死于氣候變化,其中一半以上的超額死亡率發(fā)生在非洲;人口對熱浪的暴露度將顯著增加(很高可信度),在SSP3-4.5和SSP3-8.5情景下,暴露度預(yù)計分別增加16倍和36倍;傳染病和非傳染病的疾病負(fù)擔(dān)將會顯著增加(很高可信度),部分地區(qū)瘧疾的分布范圍將縮小、傳播強度將減少,但在撒哈拉以南非洲、亞洲和南美洲等地區(qū)可能會存在增加的現(xiàn)象;營養(yǎng)不良、發(fā)育遲緩和相關(guān)的兒童死亡率(尤其是在非洲和亞洲)將可能增加(高可信度),同時也將進一步威脅精神心理健康(很高可信度),尤其是兒童、青少年和老年人的心理健康狀況。但未來的健康風(fēng)險結(jié)果主要取決于氣候變化的減緩和適應(yīng)程度(高可信度)。
世界各國在適應(yīng)氣候變化和促進人群健康方面仍有較大的發(fā)展空間。制定氣候適應(yīng)型的發(fā)展路徑會減少氣候變化導(dǎo)致的健康風(fēng)險,其中包括增加清潔能源的使用以減少溫室氣體排放,構(gòu)建具有氣候恢復(fù)力的城市規(guī)劃,發(fā)展更健康的可持續(xù)食物系統(tǒng),普及醫(yī)療保健和社會保障系統(tǒng),建設(shè)大規(guī)模、積極的與氣候變化適應(yīng)能力相關(guān)的基礎(chǔ)設(shè)施,積極履行《巴黎協(xié)定》《仙臺減災(zāi)框架》和可持續(xù)發(fā)展目標(biāo)等國際協(xié)議,加大對健康領(lǐng)域適應(yīng)氣候變化的資金和科研支持等。這些措施如果能夠深入結(jié)合當(dāng)?shù)厝丝谔卣饔绕涫翘囟ㄈ后w、社區(qū)結(jié)構(gòu)以及健康脆弱性等多維度因素,會使健康領(lǐng)域適應(yīng)氣候變化的變革轉(zhuǎn)型更加協(xié)調(diào)有效,實現(xiàn)健康協(xié)同效益最大化。
5 對中國的啟示
AR6報告對于中國科學(xué)界和政策制定者充分認(rèn)識和理解氣候變化影響健康的程度與范圍、機制與路徑、未來風(fēng)險的發(fā)展趨勢與演變過程,以及適應(yīng)策略與成本效益等方面都具有重要的啟示作用。中國地域遼闊,氣候環(huán)境差異大,氣候變化對公眾健康造成的風(fēng)險范圍很廣,且受到社會經(jīng)濟發(fā)展不平衡以及醫(yī)療衛(wèi)生資源不均等因素的影響,其健康效應(yīng)存在不同區(qū)域上的巨大脆弱性差異。因此,中國需要在國家和地方層面開展氣候變化健康風(fēng)險評估、標(biāo)準(zhǔn)化指南、決策支持工具等工作并形成相應(yīng)的產(chǎn)品,以指導(dǎo)適應(yīng)氣候變化的公共衛(wèi)生行動及規(guī)劃,提升醫(yī)療衛(wèi)生機構(gòu)的應(yīng)對能力,增強對突發(fā)公共衛(wèi)生事件的應(yīng)急準(zhǔn)備。
目前,中國雖然開展了較多氣象因素與健康的關(guān)聯(lián)性研究,但對于脆弱性、適應(yīng)性和健康協(xié)同效益方面的研究較少。未來,中國有很多地區(qū)將面臨極端高溫、海平面上升、洪澇、干旱、臺風(fēng)等多重風(fēng)險,這些風(fēng)險與產(chǎn)業(yè)結(jié)構(gòu)轉(zhuǎn)型、城市化和老齡化等相互交織,將會帶來更復(fù)雜的健康挑戰(zhàn)[51]。為了更好地保障中國人群健康,國家和地方亟需針對氣候變化的健康影響開展系統(tǒng)全面的科學(xué)評估,明確氣候變化適應(yīng)策略和干預(yù)措施的有效性和成本效益。醫(yī)療衛(wèi)生機構(gòu)應(yīng)通過與氣象部門密切合作,在重大疾病的環(huán)境監(jiān)測和早期預(yù)警中獲得有價值的科研數(shù)據(jù)。
此外,中國提出“2030年前碳達峰,2060年前碳中和”的“雙碳”目標(biāo),向世界展現(xiàn)了中國氣候治理的雄心?!半p碳”目標(biāo)的實現(xiàn)主要通過產(chǎn)業(yè)和能源結(jié)構(gòu)的清潔化調(diào)整、低碳綠色生產(chǎn)生活方式的普及以及增加碳匯等手段,此過程會產(chǎn)生巨大的健康協(xié)同效益。探索“雙碳”目標(biāo)與人類健康的協(xié)同治理機制,將氣候變化與環(huán)境健康融入“1+N”頂層設(shè)計,對于中國應(yīng)對氣候變化、改善公眾健康、推進生態(tài)文明建設(shè)和實現(xiàn)可持續(xù)發(fā)展都具有十分重要的意義。
參考文獻
[1]
IPCC. Climate change 2022: impacts, adaptation and vulnerability[M].
Cambridge:
Cambridge University Press, 2022
[本文引用: 3]
[2]
IPCC. Climate change 2014:impacts, adaptation, and vulnerability[M].
Cambridge:
Cambridge University Press, 2014
[本文引用: 1]
[3]
Wu Y, Huang C.
Climate change and vector-borne diseases in China: a review of evidence and implications for risk management
[J]. Biology, 2022, 11 (3): 370DOI:10.3390/biology11030370 URL [本文引用: 1]
[4]
Phung D, Huang C, Rutherford S, et al.
Climate change, water quality, and water-related diseases in the Mekong Delta basin: a systematic review
[J]. Asia-Pacific Journal of Public Health, 2015, 27 (3): 265-276DOI:10.1177/1010539514565448 PMID:25563349 [本文引用: 1]
Mekong Delta Basin (MDB) is vulnerable to extreme climate and hydrological events. The objectives of this review are to understand of water related health effects exacerbated by climate change and the gaps of knowledge on the relationships between climate conditions, water quality, and water-related diseases in the MDB. The findings indicate that a few studies with qualitative emphases on the relationships between climate and water quality have been conducted in MDB, and they are insufficient to describe the pattern of climate-disease relationship. The diseases caused by chemical contaminants in relation to changes of climate conditions are neglected in MDB. We suggest further studies to examine the influence of short-term variation of climate conditions on water quality and water-related diseases for the purpose of public health and medical prevention, and due to the trans-boundary nature of MDB, developing partnership in data sharing and research collaboration among MDBs countries should be prioritized. ? 2015 APJPH.
[5]
Ogden N H, Radojevic M, Wu X, et al.
Estimated effects of projected climate change on the basic reproductive number of the Lyme disease vector ixodes scapularis
[J]. Environmental Health Perspectives, 2014, 122 (6): 631-638DOI:10.1289/ehp.1307799 URL [本文引用: 1]
[6]
Cai W, Zhang C, Suen H P, et al.
The 2020 China report of the Lancet Countdown on health and climate change
[J]. The Lancet Public Health, 2021, 6 (1): 64-81[本文引用: 3]
[7]
Zhang N, Song D, Zhang J, et al.
The impact of the 2016 flood event in Anhui province, China on infectious diarrhea disease: an interrupted time-series study
[J]. Environment International, 2019, 127: 801-809DOI:S0160-4120(19)30040-6 PMID:31051323 [本文引用: 1]
Climate change may bring more frequent and severe floods which will heighten public health problems, including an increased risk of infectious diarrhea in susceptible populations. Affected by heavy rainfall and an El Ni?o event, a destructive flood occurred in Anhui province, China on 18th June 2016. This study investigates the impact of this severe flood on infectious diarrhea at both city-level and provincial level, and further to identify modifying factor. We obtained information on infectious diarrheal cases during 2013-2017 from the National Disease Surveillance System. An interrupted time-series design was used to estimate effects of the flood event on diarrhea in 16 cities. Then we applied a meta-analysis to estimate the area-level pooled effects of the flood in both flooded areas and non-flooded areas. Finally, a meta-regression was applied to determine whether proximity to flood was a predictor of city-level risks. Stratified analyses by gender and age group were also conducted for flooded areas. A significant increase in infectious diarrhea risk (RR?=?1.11, 95% CI: 1.01, 1.23) after the flood event was found in flooded area with variation in risks across cities, while there was no increase in non-flooded areas. Diarrheal risks post-flood was progressively higher in cities with greater proximity to the Yangtze River. Children aged 5-14 were at highest risk of diarrhea post-flood in the flooded areas. Our study provides strong evidence that the 2016 severe flood significantly increased infectious diarrheal risk in exposed populations. Local public health agencies are advised to develop intervention programs to prevent and control infectious diarrhea risk when a major flood occurs, especially in areas close to water bodies and among vulnerable populations.Copyright ? 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.
[9]
Zuo S, Yang L, Dou P, et al.
The direct and interactive impacts of hydrological factors on bacillary dysentery across different geographical regions in Central China
[J]. Science of The Total Environment, 2021, 764: 144609[本文引用: 1]
[10]
Wang P, Goggins W B, Chan E Y Y.
Associations of Salmonella hospitalizations with ambient temperature, humidity and rainfall in Hong Kong
[J]. Environment International, 2018, 120: 223-230DOI:S0160-4120(18)30949-8 PMID:30103121 [本文引用: 1]
Little is known about the relationship between Salmonella infection and meteorological parameters other than air temperature. This study aimed to explore associations of Salmonella hospitalizations with temperature, relative humidity (RH) and rainfall.With negative binomial distribution assumed, time-series regression model adjusting for season and time trend were constructed employing distributed lag non-linear models and generalized additive models. Meteorological variables including mean temperature, RH, and daily total rainfall as well as indicator variables including day of the week and public holiday were incorporated in the models.Higher temperature was strongly associated with more hospitalizations over the entire range of temperatures observed. There was a net 6.13 (95%Confidence Interval (CI) 3.52-10.67) relative risk of hospitalization at a temperature of 30.5?°C, relative to 13?°C, lag 0-16?days. Positive associations were found for RH above 60% and rainfall between 0 and 0.14?mm. Extreme high humidity (96%) and trace rainfall (0.02?mm) were associated with 2.06 (95%CI 1.35-3.14), lag 0-17?day, and 1.30 (95%CI 1.01-1.67), lag 0-26?days, relative risks of hospitalizations, relative to 60% and no rain, respectively.High temperatures, high RH and light rainfall are positively associated with Salmonella hospitalizations. The very strong association with temperatures implies that hotter days will lead to increases in Salmonella morbidity in the absence of other changes, and the public health implications of this could be exacerbated by global climate change.Copyright ? 2018 Elsevier Ltd. All rights reserved.
[11]
Lam E, Morris D H, Hurt A C, et al.
The impact of climate and antigenic evolution on seasonal influenza virus epidemics in Australia
[J]. Nature Communications, 2020, 11 (1): 2741DOI:10.1038/s41467-020-16545-6 URL [本文引用: 1]
[12]
Giorgini P, Di Giosia P, Petrarca M, et al.
Climate changes and human health: a review of the effect of environmental stressors on cardiovascular diseases across epidemiology and biological mechanisms
[J]. Current Pharmaceutical Design, 2017, 23 (22): 3247-3261DOI:10.2174/1381612823666170317143248 PMID:28317479 [本文引用: 1]
Climate change is rapidly affecting all the regions of our planet. The most relevant example is global warming, which impacts on the earth's ecosystems, threatening human health. Other effects include extreme variations in temperature and increases in air pollution. These events may negatively impact mortality and morbidity for cardiovascular diseases.In this review, we discuss the main effects of climate changes on cardiovascular diseases, reporting the epidemiological evidences and the biological mechanisms linking climate change consequences to hypertension, diabetes, ischemic heart diseases, heart failure and stroke.Up to now, findings suggest that humans acclimate under different weather conditions, even though extreme temperatures and higher levels of air pollution can influence health-related outcomes. In these cases, climate change adversely affects cardiovascular system and the high-risk subjects for cardiovascular diseases are those more exposed.Finally, we examine climate change implications on publich health and suggest adaptation strategies to monitor the high-risk population, and reduce the amount of hospital admissions associated to these events. Such interventions may minimize the costs of public health and reduce the mortality for cardiovascular diseases.Copyright? Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
[13]
Navarro K M, Kleinman M T, Mackay C E, et al.
Wildland firefighter smoke exposure and risk of lung cancer and cardiovascular disease mortality
[J]. Environmental Research, 2019, 173: 462-468DOI:10.1016/j.envres.2019.03.060 URL [本文引用: 1]
[14]
Deng S Z, Bjalaludin B, Manto J, et al.
Climate change, air pollution, and allergic respiratory diseases: a call to action for health professionals
[J]. Chinese Medical Journal, 2020, 133 (13): 1552-1560DOI:10.1097/CM9.0000000000000861 URL [本文引用: 1]
[15]
Mulli Ns J, White C.
Temperature and mental health: evidence from the spectrum of mental health outcomes
[J]. IZA Discussion Papers, 2019, 68: 102240[本文引用: 1]
[16]
Obradovich N, Migliorini R, Paulus M P, et al.
Empirical evidence of mental health risks posed by climate change
[J]. Proceedings of The National Academy of Sciences, 2018, 115 (43): 10953-10958DOI:10.1073/pnas.1801528115 URL [本文引用: 2]
[17]
Burke M, González F, Baylis P, et al.
Higher temperatures increase suicide rates in the United States and Mexico
[J]. Nature Climate Change, 2018, 8 (8): 723-729DOI:10.1038/s41558-018-0222-x URL [本文引用: 1]
[18]
Zhong S, Yang L, Toloo S, et al.
The long-term physical and psychological health impacts of flooding: a systematic mapping
[J]. Science of The Total Environment, 2018, 626: 165-194DOI:10.1016/j.scitotenv.2018.01.041 URL [本文引用: 2]
[19]
Schwartz R, Sison C, Kerath S, et al.
The impact of Hurricane Sandy on the mental health of New York area residents
[J]. American Journal of Disaster Medicine, 2015, 10: 339-346DOI:10.5055/ajdm.2015.0216 PMID:27149315 [本文引用: 1]
To evaluate the long-term psychological impact of Hurricane Sandy on New York residents.Prospective, cross-sectional study.Community-based study.From October 2013 to February 2015, 669 adults in Long Island, Queens, and Staten Island completed a survey on their behavioral and psychological health, demographics, and hurricane impact (ie, exposure).Depression, anxiety, and post-traumatic stress disorder (PTSD).Using multivariable logistic regression models, the relationships between Hurricane Sandy exposure and depression, anxiety, and PTSD were examined. Participants experienced an average of 3.9 exposures to Hurricane Sandy, most of which were related to property damage/loss. Probable depression was reported in 33.4 percent of participants, probable anxiety in 46 percent, and probable PTSD in 21.1 percent. Increased exposure to Hurricane Sandy was significantly associated with a greater likelihood of depression (odds ratio [OR] = 1.09, 95% confidence interval [CI]: 1.04-1.14), anxiety (OR = 1.08, 95% CI: 1.03-1.13), and probable PTSD (OR = 1.32, 95% CI: 1.23-1.40), even after controlling for demographic factors known to increase susceptibility to mental health issues.Individuals affected by Hurricane Sandy reported high levels of mental health issues and were at an increased risk of depression, anxiety, and PTSD in the years following the storm. Recovery and prevention efforts should focus on mental health issues in affected populations.
[20]
Cunsolo A, Harper S L, Minor K, et al.
Ecological grief and anxiety: the start of a healthy response to climate change?
[J]. The Lancet Planetary Health, 2020, 4 (7): 261-263[本文引用: 1]
[22]
Wang J, Obradovich N, Zheng S.
A 43-million-person investigation into weather and expressed sentiment in a changing climate
[J]. One Earth, 2020, 2 (6): 568-577DOI:10.1016/j.oneear.2020.05.016 URL [本文引用: 1]
[23]
Pecl G T, Araújo M B, Bell J D, et al.
Biodiversity redistribution under climate change: impacts on ecosystems and human well-being
[J]. Science, 2017, 355 (6332): i9214[本文引用: 1]
[24]
Eckstein D, Künzel V, Sch?fer L.
Global climate risk index 2018
[R]. Germanwatch eV: Bonn, Germany, 2017[本文引用: 1]
[25]
Ma R, Zhong S, Morabito M, et al.
Estimation of work-related injury and economic burden attributable to heat stress in Guangzhou, China
[J]. Science of The Total Environment, 2019, 666: 147-154DOI:10.1016/j.scitotenv.2019.02.201 URL [本文引用: 1]
[26]
Watts N, Amann M, Arnell N, et al.
The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate
[J]. The Lancet, 2019, 394 (10211): 1836-1878DOI:10.1016/S0140-6736(19)32596-6 URL [本文引用: 1]
[27]
Wang Q, Li B, Benmarhnia T, et al.
Independent and combined effects of heatwaves and PM2.5 on preterm birth in Guangzhou, China: a survival analysis
[J]. Environmental Health Perspectives, 2020, 128: 17006DOI:10.1289/EHP5117 URL [本文引用: 1]
[28]
Swinburn B A, Kraak V I, Allender S, et al.
The global syndemic of obesity, undernutrition, and climate change: the Lancet commission report
[J]. The Lancet, 2019, 393 (10173): 791-846DOI:10.1016/S0140-6736(18)32822-8 URL [本文引用: 1]
[29]
Alava J J, Cheung W W L, Ross P S, et al.
Climate change-contaminant interactions in marine food webs: toward a conceptual framework
[J]. Global Change Biology, 2017, 23 (10): 3984-4001DOI:10.1111/gcb.13667 PMID:28212462 [本文引用: 1]
Climate change is reshaping the way in which contaminants move through the global environment, in large part by changing the chemistry of the oceans and affecting the physiology, health, and feeding ecology of marine biota. Climate change-associated impacts on structure and function of marine food webs, with consequent changes in contaminant transport, fate, and effects, are likely to have significant repercussions to those human populations that rely on fisheries resources for food, recreation, or culture. Published studies on climate change-contaminant interactions with a focus on food web bioaccumulation were systematically reviewed to explore how climate change and ocean acidification may impact contaminant levels in marine food webs. We propose here a conceptual framework to illustrate the impacts of climate change on contaminant accumulation in marine food webs, as well as the downstream consequences for ecosystem goods and services. The potential impacts on social and economic security for coastal communities that depend on fisheries for food are discussed. Climate change-contaminant interactions may alter the bioaccumulation of two priority contaminant classes: the fat-soluble persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), as well as the protein-binding methylmercury (MeHg). These interactions include phenomena deemed to be either climate change dominant (i.e., climate change leads to an increase in contaminant exposure) or contaminant dominant (i.e., contamination leads to an increase in climate change susceptibility). We illustrate the pathways of climate change-contaminant interactions using case studies in the Northeastern Pacific Ocean. The important role of ecological and food web modeling to inform decision-making in managing ecological and human health risks of chemical pollutants contamination under climate change is also highlighted. Finally, we identify the need to develop integrated policies that manage the ecological and socioeconomic risk of greenhouse gases and marine pollutants.? 2017 John Wiley & Sons Ltd.
[30]
Kraemer M U G, Reiner R C, Brady O J, et al.
Past and future spread of the arbovirus vectors Aedes Aegypti and Aedes Albopictus
[J]. Nature Microbiology, 2019, 4 (5): 854-863DOI:10.1038/s41564-019-0376-y PMID:30833735 [本文引用: 1]
The global population at risk from mosquito-borne diseases-including dengue, yellow fever, chikungunya and Zika-is expanding in concert with changes in the distribution of two key vectors: Aedes aegypti and Aedes albopictus. The distribution of these species is largely driven by both human movement and the presence of suitable climate. Using statistical mapping techniques, we show that human movement patterns explain the spread of both species in Europe and the United States following their introduction. We find that the spread of Ae. aegypti is characterized by long distance importations, while Ae. albopictus has expanded more along the fringes of its distribution. We describe these processes and predict the future distributions of both species in response to accelerating urbanization, connectivity and climate change. Global surveillance and control efforts that aim to mitigate the spread of chikungunya, dengue, yellow fever and Zika viruses must consider the so far unabated spread of these mosquitos. Our maps and predictions offer an opportunity to strategically target surveillance and control programmes and thereby augment efforts to reduce arbovirus burden in human populations globally.
[31]
Messina J P, Brady O J, Golding N, et al.
The current and future global distribution and population at risk of Dengue
[J]. Nature Microbiology, 2019, 4 (9): 1508-1515DOI:10.1038/s41564-019-0476-8 PMID:31182801 [本文引用: 1]
Dengue is a mosquito-borne viral infection that has spread throughout the tropical world over the past 60 years and now affects over half the world's population. The geographical range of dengue is expected to further expand due to ongoing global phenomena including climate change and urbanization. We applied statistical mapping techniques to the most extensive database of case locations to date to predict global environmental suitability for the virus as of 2015. We then made use of climate, population and socioeconomic projections for the years 2020, 2050 and 2080 to project future changes in virus suitability and human population at risk. This study is the first to consider the spread of Aedes mosquito vectors to project dengue suitability. Our projections provide a key missing piece of evidence for the changing global threat of vector-borne disease and will help decision-makers worldwide to better prepare for and respond to future changes in dengue risk.
[32]
McCreesh N, Nikulin G, Booth M.
Predicting the effects of climate change on Schistosoma Mansoni transmission in eastern Africa
[J]. Parasites & Vectors, 2015, 8 (1): 4[本文引用: 1]
[33]
Brubacher J, Allen D M, Déry S J, et al.
Associations of five food- and water-borne diseases with ecological zone, land use and aquifer type in a changing climate
[J]. Science of The Total Environment, 2020, 728: 138808[本文引用: 1]
[35]
Zhang B, Li G, Ma Y, et al.
Projection of temperature-related mortality due to cardiovascular disease in Beijing under different climate change, population, and adaptation scenarios
[J]. Environmental Research, 2018, 162: 152-159DOI:S0013-9351(17)31770-X PMID:29306663 [本文引用: 1]
Human health faces unprecedented challenges caused by climate change. Thus, studies of the effect of temperature change on total mortality have been conducted in numerous countries. However, few of those studies focused on temperature-related mortality due to cardiovascular disease (CVD) or considered future population changes and adaptation to climate change. We present herein a projection of temperature-related mortality due to CVD under different climate change, population, and adaptation scenarios in Beijing, a megacity in China. To this end, 19 global circulation models (GCMs), 3 representative concentration pathways (RCPs), 3 socioeconomic pathways, together with generalized linear models and distributed lag non-linear models, were used to project future temperature-related CVD mortality during periods centered around the years 2050 and 2070. The number of temperature-related CVD deaths in Beijing is projected to increase by 3.5-10.2% under different RCP scenarios compared with that during the baseline period. Using the same GCM, the future daily maximum temperatures projected using the RCP2.6, RCP4.5, and RCP8.5 scenarios showed a gradually increasing trend. When population change is considered, the annual rate of increase in temperature-related CVD deaths was up to fivefold greater than that under no-population-change scenarios. The decrease in the number of cold-related deaths did not compensate for the increase in that of heat-related deaths, leading to a general increase in the number of temperature-related deaths due to CVD in Beijing. In addition, adaptation to climate change may enhance rather than ameliorate the effect of climate change, as the increase in cold-related CVD mortality greater than the decrease in heat-related CVD mortality in the adaptation scenarios will result in an increase in the total number of temperature-related CVD mortalities.Copyright ? 2018 Elsevier Inc. All rights reserved.
[36]
Ma F, Yuan X.
Impact of climate and population changes on the increasing exposure to summertime compound hot extremes
[J]. Science of The Total Environment, 2021, 772: 145004[本文引用: 1]
[37]
He Y, Deng S, Ho H C, et al.
The half-degree matters for heat-related health impacts under the 1.5℃ and 2℃warming scenarios: evidence from ambulance data in Shenzhen, China
[J]. Advances in Climate Change Research, 2021, 12 (5): 628-637DOI:10.1016/j.accre.2021.09.001 URL [本文引用: 1]
[39]
Liu X.
Reductions in labor capacity from intensified heat stress in China under future climate change
[J]. International Journal of Environmental Research and Public Health, 2020, 17: 1278DOI:10.3390/ijerph17041278 URL [本文引用: 1]
[40]
Jones B, Tebaldi C, O′Neill B C, et al.
Avoiding population exposure to heat-related extremes: demographic change vs climate change
[J]. Climatic Change, 2018, 146 (3): 423-437DOI:10.1007/s10584-017-2133-7 URL [本文引用: 1]
[41]
Lloyd S, Bangalore M, Chalabi Z, et al.
A global-level model of the potential impacts of climate change on child stunting via income and food price in 2030
[J]. Environmental Health Perspectives, 2018, 126: 97007DOI:10.1289/EHP2916 URL [本文引用: 1]
[42]
Springmann M, Mason-D′Croz D, Robinson S, et al.
Global and regional health effects of future food production under climate change: a modelling study
[J]. The Lancet, 2016, 387 (10031): 1937-1946DOI:10.1016/S0140-6736(15)01156-3 URL [本文引用: 1]
[43]
Ebi K L, Boyer C, Ogden N, et al.
Burning embers: synthesis of the health risks of climate change
[J]. Environmental Research Letters, 2021, 16 (4): 44042DOI:10.1088/1748-9326/abeadd URL [本文引用: 1]
[44]
Jay O, Capon A, Berry P, et al.
Reducing the health effects of hot weather and heat extremes: from personal cooling strategies to green cities
[J]. The Lancet, 2021, 398 (10301): 709-724DOI:10.1016/S0140-6736(21)01209-5 URL [本文引用: 1]
[45]
Willett W, Rockstr?m J, Loken B, et al.
Food in the Anthropocene: the EAT-Lancet commission on healthy diets from sustainable food systems
[J]. The Lancet, 2019, 393 (10170): 447-492DOI:10.1016/S0140-6736(18)31788-4 URL [本文引用: 1]
[46]
Schucht S, Colette A, Rao S, et al.
Moving towards ambitious climate policies: monetised health benefits from improved air quality could offset mitigation costs in Europe
[J]. Environmental Science & Policy, 2015, 50: 252-269[本文引用: 1]
[47]
Campagnolo L, Davide M.
Can the Paris deal boost SDGs achievement? An assessment of climate mitigation co-benefits or side-effects on poverty and inequality
[J]. World Development, 2019, 122: 96-109DOI:10.1016/j.worlddev.2019.05.015 [本文引用: 1]
The paper investigates potential synergies and trade-offs between emission reduction policies and sustainable development objectives. Specifically, it provides an ex-ante assessment that the impacts of the Nationally Determined Contributions (NDCs), submitted under the Paris Agreement, will have on the Sustainable Development Goals (SDGs) of poverty eradication (SDG1) and reduced income inequality (SDG10). Through this research we aim at answering the following questions: does mitigation policy always imply a trade-off with development objectives? If this is the case, what is the magnitude of the effect of the new international climate architecture on poverty and inequality? By combining an empirical analysis with a modelling exercise, the paper estimates the future trends of poverty prevalence and inequality across countries in a reference scenario and under a climate mitigation policy with alternative revenue recycling schemes. Our study finds that a full implementation of the emission reduction contributions, stated in the NDCs, is projected to slow down the effort to reduce poverty by 2030 (+4.2% of the population below the poverty line compared to the baseline scenario), especially in countries that have proposed relatively more stringent mitigation targets and suffer higher policy costs. Conversely, the impact of climate policy on inequality shows opposite sign but remains very limited. If financial support for mitigation action in developing countries is provided through an international climate fund, the prevalence of poverty will be slightly reduced at the aggregate level, but the country-specific effect depends on the relative size of funds flowing to beneficiary countries and on their economic structure. The output of our analysis contributes to the emerging literature on the linkages between climate change policy and sustainable development, although we capture only partially the complex system of interrelations and feedbacks proper of the SDGs. Moreover, due to its policy relevance, it further enriches the debate on the implementation of the Paris Agreement and its climate finance tools. (C) 2019 Elsevier Ltd.
[48]
Charlesworth K E, Jamieson M.
Healthcare in a carbon-constrained world
[J]. Australian Health Review: A Publication of The Australian Hospital Association, 2019, 43 (3): 241-245DOI:10.1071/AH17184 URL [本文引用: 1]
[49]
Charlesworth K, Stewart G, Sainsbury P.
Addressing the carbon footprint of health organisations: eight lessons for implementation
[J]. Public Health Research & Practice, 2018, 28 (4): e2841830[本文引用: 1]
[50]
Frumkin H.
The US health care sector’s carbon footprint: stomping or treading lightly?
[J]. American Journal of Public Health, 2017, 108 (S2): S56-S57[本文引用: 1]
[51]
鐘爽, 黃存瑞.
氣候變化的健康風(fēng)險與衛(wèi)生應(yīng)對
[J]. 科學(xué)通報, 2019, 64 (19): 2002-2010.[本文引用: 1]
Zhong S, Huang C.
Climate change and human health: risks and responses
[J]. Chinese Science Bulletin, 2019, 64 (19): 2002-2010 (in Chinese)[本文引用: 1]
相關(guān)知識
氣候變化對人類健康影響的研究:IPCC AR6 WGⅡ的解讀
氣候變化與健康
報告:建議以健康驅(qū)動空氣污染和氣候變化協(xié)同治理
熱浪、洪水、野火如何威脅中國人的健康|《柳葉刀》報告
多權(quán)威機構(gòu)聯(lián)合發(fā)布報告:以健康驅(qū)動空氣污染與氣候變化協(xié)同治理
報告:建議以健康驅(qū)動空氣污染和氣候變化協(xié)同治理—新聞—科學(xué)網(wǎng)
氣候變化帶來健康風(fēng)險,我們?nèi)绾螒?yīng)對
聯(lián)合國最新報告:全球氣候變化或?qū)?dǎo)致超級細(xì)菌增加
大數(shù)據(jù)解讀深圳人健康報告
健康體檢報告解讀PPT課件.pptx
網(wǎng)址: IPCC AR6報告解讀:氣候變化與人類健康 http://m.u1s5d6.cn/newsview239017.html
推薦資訊
- 1發(fā)朋友圈對老公徹底失望的心情 12775
- 2BMI體重指數(shù)計算公式是什么 11235
- 3補腎吃什么 補腎最佳食物推薦 11199
- 4性生活姿勢有哪些 盤點夫妻性 10425
- 5BMI正常值范圍一般是多少? 10137
- 6在線基礎(chǔ)代謝率(BMR)計算 9652
- 7一邊做飯一邊躁狂怎么辦 9138
- 8從出汗看健康 出汗透露你的健 9063
- 9早上怎么喝水最健康? 8613
- 10五大原因危害女性健康 如何保 7826