首頁 資訊 中國生物肥料與有機(jī)肥料研究三十年:回顧與展望

中國生物肥料與有機(jī)肥料研究三十年:回顧與展望

來源:泰然健康網(wǎng) 時(shí)間:2024年12月01日 21:05

摘要:

生物肥料與有機(jī)肥料是環(huán)境友好的綠色肥料,在培肥耕地、改良土壤、提高農(nóng)產(chǎn)品品質(zhì)中發(fā)揮重要作用,是支撐農(nóng)業(yè)綠色發(fā)展、保障國家糧食安全的重要投入品。自20世紀(jì)中葉,我國化肥工業(yè)的快速發(fā)展為促進(jìn)糧食持續(xù)增產(chǎn)提供了充足的無機(jī)養(yǎng)分;到20世紀(jì)90年代,我國肥料投入中化肥占比達(dá)到最高,有機(jī)肥料等的施用相應(yīng)降至最低。對化肥的依賴導(dǎo)致了耕地質(zhì)量退化、農(nóng)田環(huán)境污染、農(nóng)產(chǎn)品質(zhì)量下降等一系列問題,嚴(yán)重影響了我國耕地的可持續(xù)利用和農(nóng)業(yè)可持續(xù)發(fā)展,因此我國加大了對生物肥料與有機(jī)肥料的研究。三十年來,我國生物肥料與有機(jī)肥料在基礎(chǔ)研究、應(yīng)用研究和產(chǎn)業(yè)化方面都取得了日新月異的進(jìn)展。我國的生物肥料研究從最初的根瘤菌等固氮功能逐步擴(kuò)展到溶磷解鉀等活化養(yǎng)分功能,進(jìn)一步發(fā)展到消減土壤障礙與增強(qiáng)作物抗逆等非養(yǎng)分功能;從單一菌種發(fā)展到多菌種及合成菌群,產(chǎn)品類型從單純的菌劑發(fā)展到生物有機(jī)肥和復(fù)合微生物肥料,產(chǎn)業(yè)規(guī)模和技術(shù)水平顯著提升。有機(jī)肥料研究從關(guān)注堆肥過程中的有機(jī)養(yǎng)分轉(zhuǎn)化到提高堆肥效率的技術(shù)工藝和有害因子的消除與阻控等。近年來,在“雙碳”戰(zhàn)略背景下,清潔低碳堆肥以及通過施用有機(jī)肥快速提升土壤有機(jī)質(zhì)、增加土壤固碳成為新的研究熱點(diǎn)。本文對過去三十年我國生物肥料與有機(jī)肥料研究重點(diǎn)、代表性成績、產(chǎn)業(yè)化路徑等進(jìn)行了全面回顧和總結(jié),新形勢下國家農(nóng)業(yè)發(fā)展重大戰(zhàn)略需求以及科技的突破仍將支撐生物肥料和有機(jī)肥的快速發(fā)展,由此提出了未來的一些研究重點(diǎn)。

Abstract:

Biofertilizer and organic fertilizer are attributed to environmental-friendly green fertilizers because of their beneficial roles in improving farmland fertility and agricultural product quality, therefore, the application of biofertilizer and organic fertilizer are the key measurements for the green development of agriculture and the food security. The fast development of chemical fertilizer industry since the middle of last century provides substantial and cheap inorganic fertilizers for the sustained yield increasing. The proportion of chemical fertilizer in China’s total nutrient input reached the peak, and the application of organic fertilizer went to the lowest in 1990s. The heavily relay on chemical fertilizer has caused a series of shortcomings, like the deterioration of farmland quality, the contamination of farmland and environment, and the decline of agricultural product quality, threatens the sustainable use of farmland and development of agriculture seriously. Thereby, Chinese government strengthens the research and policy support to biofertilizer and organic fertilizer, and great progresses have been made in the basic and applied research and industrialization of biofertilizer and organic fertilizer during the past thirty years. The biofertilizer function research in China has expanded from increasing nitrogen-fixation efficiency to phosphorus and potassium solubilization, and further developed to soil barrier reduction and crop stress resistance enhancement; biofertilizer products containing single strain have been replaced by those containing multi-strains and synthetic flora. And the product types have developed from simple bacteriotics to biofertilizers and composite microbial fertilizers. The industrial scale and technological level of biofertilizer production have been improved significantly. Organic fertilizer researches not only focus on the conversion of organic nutrients during composting process but also on the technologies improving the composting efficiency and the elimination and control of harmful factors. Under the background of “two-carbon” strategy in recent years, new hotspots have turned out on researching and application of clean and low-carbon organic fertilizers are required to rapidly improve soil organic matter content and carbon sequestration capacity. We reviewed the related research emphasis, representative achievements and the industrialization paths of biofertilizer and organic fertilizer in China for the past 30 years. The requirement of national strategy and the scientific breakthroughs will continue to support the development of biofertilizer and organic fertilizer under the new situation, and some research emphases are thus proposed in near future.

圖  1   我國70年來化肥和有機(jī)肥養(yǎng)分投入比例變化

Figure  1.   The nutrient ratio from chemical and organic fertilizers in the past 70 years in China

[1] 陳華葵. 微生物和土壤的實(shí)效肥沃性[J]. 中國農(nóng)業(yè)科學(xué), 1953, (5): 214?217.

Chen H K. Microbial and edaphic effective fertility[J]. Agricultural Science in China, 1953, (5): 214?217.

[2]

Singh M, Singh D, Gupta A, et al. Plant growth promoting rhizobacteria: Application in biofertilizers and biocontrol of phytopathogens[A]. Singh A K, Kumar A, Singh P K. PGPR amelioration in sustainable agriculture: Food security and environmental management[M]. Cambridge, MA: Elsevier, 2019.

[3] 李季倫. 我國生物固氮研究的現(xiàn)狀和對策: 科技進(jìn)步與學(xué)科發(fā)展[A]. “科學(xué)技術(shù)面向新世紀(jì)”學(xué)術(shù)年會(huì)論文集[C]. 北京: 中國科學(xué)技術(shù)協(xié)會(huì), 1998.

Li J L. Research status and countermeasures of biological nitrogen fixation in China : Scientific and technological progress and discipline development[A]. Proceeding of the annual conference “Science and Technology Facing the New Century”[C]. Beijing: China Association for Science and Technology, 1998.

[4] 樊慶笙. 固氮微生物學(xué)[M]. 北京: 農(nóng)業(yè)出版社, 1993.

Fan Q S. Microbiology of nitrogen fixation[M]. Beijing: Beijing Agriculture Press, 1993.

[5] 李俊, 姜昕, 馬鳴超, 等. 我國微生物肥料產(chǎn)業(yè)需求與技術(shù)創(chuàng)新[J]. 中國土壤與肥料, 2019, (2): 1?5. DOI: 10.11838/sfsc.1673-6257.19029

Li J, Jiang X, Ma M C, et al. Development demand and technical innovation for bio-fertilizer industry in China[J]. Soil and Fertilizer Sciences in China, 2019, (2): 1?5. DOI: 10.11838/sfsc.1673-6257.19029

[6] 沈德龍, 李俊, 姜昕. 我國微生物肥料產(chǎn)業(yè)現(xiàn)狀及發(fā)展方向[J]. 中國農(nóng)業(yè)信息, 2014, (18): 41?43. DOI: 10.3969/j.issn.1672-0423.2014.09.015

Shen D L, Li J, Jiang X. Current situation and development direction of microbial fertilizer industry in China[J]. China Agricultural Information, 2014, (18): 41?43. DOI: 10.3969/j.issn.1672-0423.2014.09.015

[7] 沈其榮, 沈振國, 史瑞和. 有機(jī)肥氮素的礦化特征及與其化學(xué)組成的關(guān)系[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào), 1992, 15(1): 59?64.

Shen Q R, Shen Z G, Shi R H. The characteristics of mineralization of nitrogen in organic manure and its relation to chemical composition of organic manure[J]. Journal of Nanjing Agricultural University, 1992, 15(1): 59?64.

[8] 沈其榮, 余玲, 劉兆普, 茆澤圣. 有機(jī)無機(jī)肥料配合施用對濱海鹽土土壤生物量態(tài)氮及土壤供氮特征的影響[J]. 土壤學(xué)報(bào), 1994, 31(3): 287?294. DOI: 10.3321/j.issn:0564-3929.1994.03.004

Shen Q R, Yu L, Liu Z P, Mao Z S. Effects of combining application of organic and inorganic nitrogen fertilizers on biomass nitrogen and nitrogen-supplying characterstics of coastal saline soil[J]. Acta Pedologica Sinica, 1994, 31(3): 287?294. DOI: 10.3321/j.issn:0564-3929.1994.03.004

[9] 沈其榮, 徐慧, 徐盛榮, 曹翠玉. 有機(jī)—無機(jī)肥料養(yǎng)分在水田土壤中的轉(zhuǎn)化[J]. 土壤通報(bào), 1994, 25(7): 11?15.

Shen Q R, Xu H, Xu S R, Cao C Y. Conversion of organic-inorganic fertilizer nutrients in paddy soil[J]. Chinese Journal of Soil Science, 1994, 25(7): 11?15.

[10] 王巖, 沈其榮, 史瑞和, 黃東邁. 有機(jī)、無機(jī)肥料施用后土壤生物量C、N、P的變化及N素轉(zhuǎn)化[J]. 土壤學(xué)報(bào), 1998, 35(2): 227?234. DOI: 10.3321/j.issn:0564-3929.1998.02.011

Wang Y, Shen Q R, Shi R H, Huang D M. Changes of soil microbial biomass C, N and P and the N transformation after application of organic and inorganic fertilizers[J]. Acta Pedologica Sinica, 1998, 35(2): 227?234. DOI: 10.3321/j.issn:0564-3929.1998.02.011

[11] 沈其榮, 殷士學(xué), 楊超光, 陳巍. 13C標(biāo)記技術(shù)在土壤和植物營養(yǎng)研究中的應(yīng)用[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2000, 6(1): 98–105.

Shen Q R, Yin S X, Yang C G, Chen W. Application of 13C labeling technique to soil science and plant nutrition[J]. Journal of Plant Nutrition and Fertilizers, 2000, 6(1): 98?105.

[12] 沈中泉, 袁家富. 商品性有機(jī)肥料工廠化生產(chǎn)研究動(dòng)態(tài)[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 1998, 4(2): 117?122. DOI: 10.3321/j.issn:1008-505X.1998.02.004

Shen Z Q, Yuan J F. Study on industrial process on commercial organic fertilizers[J]. Journal of Plant Nutrition and Fertilizers, 1998, 4(2): 117?122. DOI: 10.3321/j.issn:1008-505X.1998.02.004

[13] 張銘, 蔡鵬, 吳一超, 等. 細(xì)菌胞外聚合物: 基于土壤生態(tài)功能的視角[J]. 土壤學(xué)報(bào), 2022, 59(2): 308?323. DOI: 10.11766/trxb202107310271

Zhang M, Cai P, Wu Y C, et al. Bacterial extracellular polymeric substances: From the perspective of soil ecological functions[J]. Acta Pedologica Sinica, 2022, 59(2): 308?323. DOI: 10.11766/trxb202107310271

[14]

Gauri S S, Mandal S M, Pati B R. Impact of Azotobacter exo-polysaccharides on sustainable agriculture[J]. Applied Microbiology Biotechnology, 2012, 95(2): 331?338. DOI: 10.1007/s00253-012-4159-0

[15]

Lee S M, Kong H G, Song G C, Ryu C M. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease[J]. The ISME Journal, 2021, 15(1): 330?347.

[16] 沈其榮. 中國有機(jī)(類)肥料[M]. 北京: 中國農(nóng)業(yè)出版社, 2021.

Shen Q R. Organic-based fertilizer in China[M]. Beijing: China Agriculture Press, 2021.

[17] 沈其榮, 劉東陽, 楊興明, 等. 農(nóng)業(yè)廢棄物的快速堆肥菌劑及其生產(chǎn)有機(jī)肥的方法: CN200910233577.6[P]. 2010?04?21.

Shen Q R, Liu D Y, Yang X M, et al. Rapid composting agent for agricultural waste and method for producing organic fertilizer: CN200910233577.6[P]. 2010?04?21.

[18] 鄭利杰, 王波. 我國商品有機(jī)肥發(fā)展瓶頸及策略研究[J]. 環(huán)境與可持續(xù)發(fā)展, 2017, 42(3): 38?41. DOI: 10.3969/j.issn.1673-288X.2017.03.008

Zheng L J, Wang B. Research on development bottleneck of commercial organic fertilizer in China[J]. Environment and Sustainable Development, 2017, 42(3): 38?41. DOI: 10.3969/j.issn.1673-288X.2017.03.008

[19] 符純?nèi)A, 單國芳. 我國有機(jī)肥產(chǎn)業(yè)發(fā)展與市場展望[J]. 化肥工業(yè), 2017, 44(1): 9?13. DOI: 10.3969/j.issn.1006-7779.2017.01.003

Fu C H, Shan G F. Development of organic fertilizer undustry in China and market outlook[J]. Chemical Fertilizer Industry, 2017, 44(1): 9?13. DOI: 10.3969/j.issn.1006-7779.2017.01.003

[20] 楊帆, 李榮, 崔勇, 段英華. 我國有機(jī)肥料資源利用現(xiàn)狀與發(fā)展建議[J]. 中國土壤與肥料, 2010, (4): 77?82. DOI: 10.3969/j.issn.1673-6257.2010.04.017

Yang F, Li R, Cui Y, Duan Y H. Utilization and development strtegy of organic fertilizer resources in China[J]. Soil and Fertilizer Sciences in China, 2010, (4): 77?82. DOI: 10.3969/j.issn.1673-6257.2010.04.017

[21] 李季, 彭生平. 堆肥工程實(shí)用手冊[M]. 北京: 化學(xué)工業(yè)出版社, 2011.

Li J, Peng S P. Practical manual for composting engineering[M]. Beijing: Chemical Industry Press, 2011.

[22] 孫曉華, 羅安程, 仇丹. 微生物接種對豬糞堆肥發(fā)酵過程的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2004, 10(5): 557?559. DOI: 10.3321/j.issn:1008-505X.2004.05.021

Sun X H, Luo A C, Qiu D. Effect of inoculant on composting process of swine manure[J]. Journal of Plant Nutrition and Fertilizers, 2004, 10(5): 557?559. DOI: 10.3321/j.issn:1008-505X.2004.05.021

[23] 李潔, 吳明亮, 湯遠(yuǎn)菊, 龔昕. 有機(jī)肥施肥機(jī)械的研究現(xiàn)狀與發(fā)展趨勢[J]. 湖南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2013, 39(1): 97?100.

Li J, Wu M L, Tang Y J, Gong X. Research status and development trand of organic fertilizer machinery[J]. Journal of Hunan Agricultural University (Natural Sciences), 2013, 39(1): 97?100.

[24] 楊帆, 馬常寶. 我國有機(jī)肥料利用現(xiàn)狀及發(fā)展前景[A]. 第五屆全國綠色環(huán)保肥料新技術(shù)、新產(chǎn)品交流會(huì)[C]. 北京: 中國腐植酸工業(yè)協(xié)會(huì), 2005.

Yang F, Ma C B. Present situation and developmental prospection of organic fertilizer utilization in China[A]. The fifth national green fertilizer new technology, new products exchange meeting[C] Beijing: China Humic Acid Industry Association, 2005.

[25]

Dong W T, Zhu Y Y, Chang H Z, et al. An SHR-SCR module specifies legume cortical cell fate to enable nodulation[J]. Nature, 2021, 589: 586?590.

[26]

Liu Z J, Yang J, Long Y P, et al. Single-nucleus transcriptomes reveal spatiotemporal symbiotic perception and early response in Medicago[J]. Nature Plants, 2023, 9(10): 1734?1748. DOI: 10.1038/s41477-023-01524-8

[27]

Wang T, Guo J, Peng Y Q, et al. Light-induced mobile factors from shoots regulate rhizobium-triggered soybean root nodulation[J]. Science, 2021, 374: 65?71. DOI: 10.1126/science.abh2890

[28]

Ke X L, Xiao H, Peng Y Q, et al. Phosphoenolpyruvate reallocation links nitrogen fixation rates to root nodule energy state[J]. Science, 2022, 378: 971?977.

[29]

Zhong X B, Wang J, Shi X L, et al. Genetically optimizing soybean nodulation improves yield and protein content[J]. Nature Plants, 2024, 10(5): 736?742.

[30]

Shi J C, Zhao B Y, Zheng S, et al. A phosphate starvation response-centered network regulates mycorrhizal symbiosis[J]. Cell, 2021, 184(22): 5527?5540.

[31]

Jiang Y N, Wang W X, Xie Q J, et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi[J]. Science, 2017, 356: 1172?1175. DOI: 10.1126/science.aam9970

[32]

Yu H M, Bai F X, Ji C Y, et al. Plant lysin motif extracellular proteins are required for arbuscular mycorrhizal symbiosis[J]. Proceedings of the National Academy of Science of the United States of America, 2023, 120(27): e2301884120.

[33]

Feng H C, Lü Y, Krell T, et al. Signal binding at both modules of its dCache domain enables the McpA chemoreceptor of Bacillus velezensis to sense different ligands[J]. Proceedings of the National Academy of Science of the United States of America, 2022, 119(29): e2201747119. DOI: 10.1073/pnas.2201747119

[34]

Xu Z H, Shao J H, Li B, et al. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation[J]. Applied and Environmental Microbiology, 2013, 79(3): 808?815. DOI: 10.1128/AEM.02645-12

[35]

Xu Z H, Mandic-Mulec I, Zhang H H, et al. Antibiotic bacillomycin D affects iron acquisition and biofilm formation in Bacillus velezensis through a Btr-mediated FeuABC-dependent pathway[J]. Cell Reports., 2019, 29(5): 1192?1202.

[36]

Zhan Y H, Yan Y L, Deng Z P, et al. The novel regulatory ncRNA, NfiS, optimizes nitrogen fixation via base pairing with the nitrogenase gene nifK mRNA in Pseudomonas stutzeri A1501[J]. Proceedings of the National Academy of Science of the United States of America, 2016, 113(30): E4348?E4356.

[37]

Li Q, Zhang H W, Song Y, et al. Alanine synthesized by alanine dehydrogenase enables ammonium-tolerant nitrogen fixation in Paenibacillus sabinae T27[J]. Proceedings of the National Academy of Science of the United States of America, 2022, 119(49): e2215855119.

[38]

Zhang J Y, Liu Y X, Zhang N, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice[J]. Nature Biotechnology, 2019, 37(6): 676-684.

[39]

Yu P, He X M, Baer M, et al. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation[J]. Nature Plants, 2021, 7(4): 481?499.

[40]

Liu C, Jiang M T, Yuan M M, et al. Root microbiota confers rice resistance to aluminium toxicity and phosphorus deficiency in acidic soils[J]. Nature Food, 2023, 4(10): 912?924.

[41]

Xun W B, Ren Y, Yan H, et al. Sustained inhibition of maize seed-borne Fusarium using a Bacillus-dominated rhizospheric stable core microbiota with unique cooperative patterns[J]. Advanced Science, 2023, 10(5): 2205215.

[42]

Jiang Y, Xie Q J, Wang W X, et al. Medicago AP2-Domain transcription factor WRI5a is a master regulator of lipid biosynthesis and transfer during mycorrhizal symbiosis[J]. Molecular Plant, 2018, 11(11): 1344–1359.

[43]

Luo Y M, Li G X, Luo W H, et al. Effect of phosphogypsum and dicyandiamide as additives on NH3, N2O and CH4 emissions during composting[J]. Journal of Environmental Science, 2013, 25(7): 1338?1345.

[44] 袁永康. 外加電場及生物炭強(qiáng)化低溫厭氧發(fā)酵產(chǎn)甲烷研究[D]. 河南鄭州: 河南農(nóng)業(yè)大學(xué)碩士學(xué)位論文, 2024.

Yuan Y K. Study on enhancement of methane production by low temperature anaerobic digestion with electric field and biochar[D]. Zhengzhou, Henan: MS Thesis of Henan Agricultural University, 2024.

[45]

Jiang J S, Wang Y, Liu j, et al. Exploring the mechanisms of organic matter degradation and methane emission during sewage sludge composting with added vesuvianite: Insights into the prediction of microbial metabolic function and enzymatic activity[J]. Bioresource Technology, 2019, 286: 121397.

[46]

Ren X N, Wang Z Y, Zhao M X, et al. Role of selenite on the nitrogen conservation and greenhouse gases mitigation during the goat manure composting process[J]. Science of the Total Environment, 2022, 838: 155799.

[47] 羅一鳴, 李國學(xué), Schuchardt F, 等. 過磷酸鈣添加劑對豬糞堆肥溫室氣體和氨氣減排的作用[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2012, 28(22): 235?242.

Luo Y M, Li G X, Schuchardt F, et al. Effects of additive superphosphate on NH3, N2O and CH4 emissions during pig manure composting[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(22): 235?242.

[48]

Xiong J P, Su Y, He X Q, et al. Effects of functional-membrane covering technique on nitrogen succession during aerobic composting: Metabolic pathways, functional enzymes, and functional genes[J]. Bioresource Technology, 2022, 354: 127205.

[49]

Sun Q H, Wu D, Zhang Z C, et al. Effect of cold-adapted microbial agent inoculation on enzyme activities during composting start-up at low temperature[J]. Bioresource Technology, 2017, 244: 635?640.

[50]

Wang X G, Tian L, Li Y X, et al. Effects of exogenous cellulose-degrading bacteria on humus formation and bacterial community stability during composting[J]. Bioresource Technology, 2022, 359: 127458.

[51]

Wu J Q, Qi H S, Huang X N, et al. How does manganese dioxide affect humus formation during bio-composting of chicken manure and corn straw[J]. Bioresource Technology, 2018, 269: 169?178.

[52]

Wu J Q, Wei Z M, Zhu Z C, et al. Humus formation driven by ammonia-oxidizing bacteria during mixed materials composting[J]. Bioresource Technology, 2020, 311: 123500.

[53]

Duan M L, Zhang Y H, Zhou B B, et al. Effects of Bacillus subtilis on carbon components and microbial functional metabolism during cow manure-straw composting[J]. Bioresource Technology, 2020, 303: 122868.

[54]

Cao Y, Wang J D, Huang H Y, et al. Spectroscopic evidence for hyperthermophilic pretreatment intensifying humification during pig manure and rice straw composting[J]. Bioresource Technology, 2019, 294: 122131.

[55]

Huang X L, Jia Z X, Guo J J, et al. Ten-year long-term organic fertilization enhances carbon sequestration and calcium-mediated stabilization of aggregate-associated organic carbon in a reclaimed Cambisol[J]. Geoderma, 2019, 355: 113880.

[56]

Gao X T, Tan W B, Zhao Y, et al. Diversity in the mechanisms of humin formation during composting with different materials[J]. Environmental Science & Technology, 2019, 53(7): 3653?3662.

[57]

Zhang Y C, Yue D B, Ma H. Darkening mechanism and kinetics of humification process in catechol-Maillard system[J]. Chemosphere, 2015, 130: 40?45.

[58]

Wei Z M, Mohamed T A, Zhao L, et al. Microhabitat drive microbial anabolism to promote carbon sequestration during composting[J]. Bioresource Technology, 2022, 346: 126577.

[59]

Sun Y, Ren X N, Pan J T, et al. Effect of microplastics on greenhouse gas and ammonia emissions during aerobic composting[J]. Science of the Total Environment, 2020, 737: 139856.

[60]

Liang J Y, Zhou Z G, Huo C F, et al. More replenishment than priming loss of soil organic carbon with additional carbon input[J]. Nature Communications, 2018, 9(1): 3175.

[61]

Shi T S, Collins S L, Yu K L, et al. A global meta-analysis on the effects of organic and inorganic fertilization on grasslands and croplands[J]. Nature Communications, 2024, 15(1): 3411.

[62]

Jia Z X, Huang X L, Li L N, et al. Rejuvenation of iron oxides enhances carbon sequestration by the ‘iron gate’ and ‘enzyme latch’ mechanisms in a rice-wheat cropping system[J]. Science of the Total Environment, 2022, 839: 156209.

[63]

Wan D, Ma M K, Peng N, et al. Effects of long-term fertilization on calcium-associated soil organic carbon: Implications for C sequestration in agricultural soils[J]. Science of the Total Environment, 2021, 772: 145037.

[64]

Yu G H, Xiao J, Hu S J, et al. Mineral availability as a key regulator of soil carbon storage[J]. Environmental Science & Technology, 2017, 51(9): 4960?4969.

[65]

Zhao Z B, He J Z, Geisen S, et al. Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils[J]. Microbiome, 2019, 7: 33.

[66]

Gao Y Q, Huang J Q, Reyt G, et al. A dirigent protein complex directs lignin polymerization and assembly of the root diffusion barrier[J]. Science, 2023, 382: 464?471.

相關(guān)知識(shí)

白由路:化學(xué)肥料與生態(tài)健康
肺康復(fù):回顧與展望
健康照明應(yīng)用研究發(fā)展與展望
汪麗萍:全谷物中生理活性物質(zhì)的研究進(jìn)展與展望
《2023年醫(yī)藥研發(fā)年度回顧》:中國已成全球第二大藥研大國
國內(nèi)藥政回顧:2022年1-4月,我國藥品監(jiān)管的點(diǎn)與線
中國孕婦營養(yǎng)與健康狀況十年回顧
中國健康瘦身市場發(fā)展深度分析與投資前景研究報(bào)告(2022
智研咨詢:中國減肥產(chǎn)品行業(yè)市場規(guī)模、供需態(tài)勢及發(fā)展前景研究
中國運(yùn)動(dòng)康復(fù)行業(yè)現(xiàn)狀深度研究與發(fā)展前景調(diào)研報(bào)告

網(wǎng)址: 中國生物肥料與有機(jī)肥料研究三十年:回顧與展望 http://m.u1s5d6.cn/newsview193871.html

推薦資訊