首頁 資訊 Improvement Strategies for Dietary Energy Supply of Racehorses

Improvement Strategies for Dietary Energy Supply of Racehorses

來源:泰然健康網(wǎng) 時(shí)間:2024年12月01日 00:25

摘要: 合理調(diào)制運(yùn)動(dòng)馬飼糧,保證運(yùn)動(dòng)馬能量充足是充分發(fā)揮運(yùn)動(dòng)馬競技性能的保障,運(yùn)動(dòng)馬的能量主要源自飼草中纖維素等結(jié)構(gòu)性多糖的微生物發(fā)酵和谷物類飼料中淀粉的消化吸收。粗飼料的營養(yǎng)密度低且消化利用率低,不能滿足運(yùn)動(dòng)馬的能量需求,但粗飼料可有效改善運(yùn)動(dòng)馬的胃腸和代謝健康;而谷物類飼料的營養(yǎng)密度高,且易于消化吸收,但高谷物飼糧可引致胃腸和代謝性問題。運(yùn)動(dòng)馬能量供給和代謝健康間存在一定矛盾,需采用適宜的飼料加工工藝、谷物類飼料替代、添加非營養(yǎng)性添加劑及優(yōu)化飼草給料方式等措施改善運(yùn)動(dòng)馬高谷物飼糧引致的代謝失衡。本文總結(jié)了運(yùn)動(dòng)馬粗飼料和谷物類飼料的優(yōu)缺點(diǎn),并針對性提出了改善運(yùn)動(dòng)馬能量供給的優(yōu)化策略。

Abstract: The proper adjustment of feed formula, and supply of adequate energy is the guarantee of high performance of racehorses. The two principal energy sources of racehorses are starch of grain feed and structural polysaccharides (such as cellulose) of roughage. The nutrient density, as well as the efficiency of digestion and utilization of roughage are not high enough to meet the energy requirement of racehorse. Whereas, high-fiber feedstuffs, such as hay and straw, could effectively relieve the grain feed induced metabolic disorder. As to grain feed, it contents high concentrations of nutrients, however, high grain diet could cause health problems of the gastrointestinal tract and metabolism. And so, there is a big conflict between energy supply and metabolic health in the process of racehorses breeding. Some effective measures, such as proper processing technology of roughage, the application of alternatives of grain, non-nutritive feed additive, and the feeding methods of roughage, could highly improve metabolic imbalance induced by high grain feed. In this review, we summarized the advantages and shortages of high-fiber and high grain feed of racehorses, and put forward some targeted improve measures.

運(yùn)動(dòng)馬在競技和訓(xùn)練中以及運(yùn)動(dòng)后的身體恢復(fù)均需消耗很多能量,Pratt-Phillips等[1]的研究發(fā)現(xiàn)運(yùn)動(dòng)馬的營養(yǎng)需求在NCR(2007)標(biāo)準(zhǔn)的重體力和非常重體力之間。運(yùn)動(dòng)馬飼糧中的能量因子主要有2類:粗飼料中的纖維素和谷物類飼料中的淀粉,單靠粗飼料并不能滿足運(yùn)動(dòng)馬的能量需求,這就要求在運(yùn)動(dòng)馬飼糧中補(bǔ)充足夠的谷物類飼料。但馬是一種后腸發(fā)酵動(dòng)物,其腸道微生物活動(dòng)主要發(fā)生于后腸道,飼糧組成變化會(huì)影響腸道菌群結(jié)構(gòu)和后腸道多糖發(fā)酵模式,進(jìn)而引致馬消化系統(tǒng)發(fā)生功能紊亂,尤其對于運(yùn)動(dòng)馬,飼糧從高纖維飼糧到高谷物飼糧的轉(zhuǎn)變會(huì)導(dǎo)致馬胃腸菌群失衡,從而導(dǎo)致其腸道代謝和免疫功能異常,可引致胃腸絞痛甚至死亡[2]。有研究指出,馬匹每日淀粉攝入量超過2.0 g/kg BW時(shí)就極易導(dǎo)致胃部潰瘍[3],而且高谷物飼糧會(huì)引致馬匹高血糖、胰島素抵抗等一系列代謝問題,高纖維飼糧(羊茅、苜蓿干草等)可改善斷奶馬的代謝及胃腸健康狀況[4]。高能量的纖維性飼料如窖藏半干草、甜菜漿和大豆皮等,這類飼料易被消化利用,且營養(yǎng)濃度高,可在一定程度上改善馬的代謝狀況,在運(yùn)動(dòng)馬飼喂過程中可用高能量的纖維性飼料替代部分谷物[5]。運(yùn)動(dòng)馬營養(yǎng)和管理統(tǒng)計(jì)結(jié)果顯示在運(yùn)動(dòng)馬飼喂過程中均存在一些營養(yǎng)不足或代謝異常問題,例如土耳其運(yùn)動(dòng)馬存在消化能偏低和飼料質(zhì)量差的問題[6],北美和瑞典運(yùn)動(dòng)馬存在能量飼料類型選擇的相關(guān)代謝異常問題[7-8],國內(nèi)運(yùn)動(dòng)馬的飼養(yǎng)管理也存在很多問題,本綜述對運(yùn)動(dòng)馬的能量飼料營養(yǎng)相關(guān)代謝問題進(jìn)行綜述,并結(jié)合當(dāng)前研究狀況提出合理的優(yōu)化供給策略。

1 粗飼料和谷物類飼料的消化吸收特性及其優(yōu)缺點(diǎn)

要保證運(yùn)動(dòng)馬的競技性能和競技水平,首要考慮的就是保證運(yùn)動(dòng)馬的體能,需要在飼糧中供給充足的能量,運(yùn)動(dòng)馬的能量來源包括粗飼料中的纖維素、木質(zhì)素等結(jié)構(gòu)性多糖以及谷物類飼料中的淀粉、飼糧中的油脂及蛋白質(zhì)(通過糖異生作用供能),其中最主要的是纖維素和淀粉,對纖維素和淀粉的消化吸收特性及優(yōu)缺點(diǎn)分析有利于我們針對性的優(yōu)化運(yùn)動(dòng)馬的能量供給方案。

作為一種草食性動(dòng)物,馬在長期進(jìn)化作用下形成了適于粗飼料消化吸收利用的胃腸和營養(yǎng)代謝系統(tǒng)。粗飼料經(jīng)馬匹攝入后主要依賴于后腸道微生物發(fā)酵作用將纖維素等結(jié)構(gòu)性多糖轉(zhuǎn)化為揮發(fā)性脂肪酸,揮發(fā)性脂肪酸由腸道吸收入體經(jīng)循環(huán)系統(tǒng)轉(zhuǎn)運(yùn)至肝臟進(jìn)行糖異生,發(fā)揮供能作用[5],所以,腸道微生物穩(wěn)態(tài)是保持馬匹腸道功能和健康的主要因素。而腸道微生物相關(guān)研究指出宿主營養(yǎng)結(jié)構(gòu)可直接影響腸道菌群多糖利用位點(diǎn)的組成結(jié)構(gòu),并影響腸道菌群穩(wěn)態(tài)[9-11],進(jìn)而可影響動(dòng)物的健康狀況,高纖維飼糧可促進(jìn)纖維降解菌(多為益生菌,如假黃單胞菌、甲烷菌等)在馬后腸道的增殖,對應(yīng)的腸道菌群結(jié)構(gòu)狀況符合馬匹的健康需求[12],而且高纖維素飼糧消化代謝產(chǎn)物有利于改善馬匹的代謝健康??傊呃w維飼喂模式是一種可改善運(yùn)動(dòng)馬健康和福利的喂養(yǎng)方式。所以需保證馬匹的粗飼料攝入量,但粗飼料的飽腹感強(qiáng)、消化速度慢且消化吸收效率相對較低,在揮發(fā)性脂肪酸吸收后的糖異生過程中還需要消耗部分能量。粗飼料是一種低營養(yǎng)濃度、低效率的飼料類型,不能完全滿足運(yùn)動(dòng)馬的能量需求,所以在運(yùn)動(dòng)馬飼糧中需通過添加谷物類飼料進(jìn)行營養(yǎng)補(bǔ)充。

淀粉等非結(jié)構(gòu)性多糖的消化主要依賴于馬內(nèi)源糖消化酶的催化作用,馬的內(nèi)源糖消化酶包括雙糖酶、蔗糖酶、乳糖酶和麥芽糖酶等,這些消化酶沿著腸道呈現(xiàn)不同的表達(dá)豐度特性,主要表達(dá)于前腸段,葡萄糖轉(zhuǎn)運(yùn)蛋白的表達(dá)也有一致的空間表達(dá)特性,D-葡萄糖由馬腸道黏膜上的Na+/葡萄糖共轉(zhuǎn)運(yùn)蛋白1(SGLT1)轉(zhuǎn)運(yùn)入體,此轉(zhuǎn)運(yùn)蛋白在轉(zhuǎn)錄和翻譯水平的表達(dá)豐度均表現(xiàn)為十二指腸>空腸>回腸[13],這就說明淀粉的消化及其產(chǎn)物葡萄糖的吸收均主要發(fā)生于馬的前腸道。另外,淀粉等非結(jié)構(gòu)性多糖的消化終產(chǎn)物為葡萄糖,葡萄糖吸收入體后可直接參與馬匹的骨骼肌供能和糖原積累,所以谷物類飼料的能量濃度和利用率均較高。運(yùn)動(dòng)馬在消耗肌糖原后補(bǔ)充速度慢,而劇烈運(yùn)動(dòng)后飼喂谷物類飼糧可加速其骨骼肌葡萄糖補(bǔ)充速度,提高其肌糖原補(bǔ)充速度[14],而且高淀粉飼糧可以提高運(yùn)動(dòng)馬的最高心率,優(yōu)化其反應(yīng)性和運(yùn)動(dòng)能力[15]。但高淀粉飼糧會(huì)引致馬的腸道菌群結(jié)構(gòu)變化,提高盲腸和結(jié)腸中總厭氧菌、纖維素分解菌、淀粉菌和乳酸利用菌的比例,影響腸道菌群和黏膜免疫穩(wěn)態(tài),引發(fā)腸道炎癥、胃腸絞痛等胃腸健康問題[16]。草食性動(dòng)物在正常情況下的血液中葡萄糖濃度較低,而高淀粉飼糧經(jīng)馬匹消化吸收后可迅速提高血液中葡萄糖和胰島素濃度,進(jìn)而引致馬代謝綜合征等病理問題[17],而且高淀粉飼糧的攝食速度快,往往伴隨規(guī)癖行為(crib-biting,CB),對運(yùn)動(dòng)馬心理狀況也有不利影響[18]。所以,德國馬營養(yǎng)標(biāo)準(zhǔn)相關(guān)綜述指出需調(diào)整運(yùn)動(dòng)馬的營養(yǎng)供給模式,限制運(yùn)動(dòng)馬的淀粉攝入量,并保證運(yùn)動(dòng)馬的最低粗飼料攝入量,這有助于改善馬匹消化系統(tǒng)的健康狀況,并減少與營養(yǎng)有關(guān)的病理風(fēng)險(xiǎn)[19]??傊\(yùn)動(dòng)馬的能量供給需平衡粗飼料和谷物類飼料的供給量,并采用針對性的營養(yǎng)調(diào)控策略優(yōu)化運(yùn)動(dòng)馬競技性能。

2 運(yùn)動(dòng)馬能量供給的幾個(gè)優(yōu)化策略

粗飼料和谷物類飼料是運(yùn)動(dòng)馬的主要能量來源,粗飼料的能量密度且生物利用率均處于較低水平,不能滿足運(yùn)動(dòng)馬能量需求;谷物類飼料可滿足運(yùn)動(dòng)馬能量需求,但可引致多種健康問題。Coenen等[19]對運(yùn)動(dòng)馬粗飼料和谷物類飼料的能量、蛋白質(zhì)含量及生物利用率進(jìn)行了分析,提出馬匹每日淀粉攝入量小于2 g/kg BW,每日粗飼料攝入量大于20 g/kg BW,才能保證馬匹健康,但以這樣的飼糧配比方式并不能完全滿足高水平運(yùn)動(dòng)馬的能量需求,所以應(yīng)采用多種針對性優(yōu)化策略改善運(yùn)動(dòng)馬的能量營養(yǎng)狀態(tài),主要調(diào)控方式包括采用適宜的飼料加工工藝、谷物類飼料替代、添加非營養(yǎng)性飼料添加劑和優(yōu)化飼草給料方式。

2.1 飼料加工工藝對運(yùn)動(dòng)馬粗飼料消化吸收效率的影響

采用適宜的飼料加工工藝可改變馬飼糧的物理和化學(xué)特性,從而優(yōu)化馬的膳食結(jié)構(gòu)、采食頻率、采食量及飼料消化利用率,進(jìn)而改善馬的生產(chǎn)性能和運(yùn)動(dòng)能力[20]。就谷物類飼料而言,研究顯示采用熱處理、化學(xué)處理及種皮破壞處理可改善馬匹對谷物類飼料(玉米和大麥)干物質(zhì)、淀粉、蛋白質(zhì)和脂肪酸的盲腸消化率[21]。而運(yùn)動(dòng)馬能量飼料供給更多的需關(guān)注其粗飼料的加工和貯存工藝選擇,首先,飼草的刈割時(shí)間可影響飼草的營養(yǎng)組成和攝入時(shí)間,由于成熟后期飼草的纖維素和木質(zhì)素含量較高,所以馬匹的攝入時(shí)間長,咀嚼和吞咽速度慢,可有效減少馬匹的CB[22],但成熟前期刈割飼草可提高其消化利用率[23]。另外,對于放牧馬匹,通過刈割降低草皮高度,可有效降低放牧馬匹飼糧中的非結(jié)構(gòu)性多糖、水溶性多糖及乙醇可溶性多糖的含量,可有效防治馬匹的胰島素抵抗問題[24]。

干草是馬匹粗飼料的一個(gè)主要組成部分,在其生長和曬制干燥過程中的環(huán)境狀況(空氣霧霾及過敏原)會(huì)影響干草中的粉塵、霉菌和空氣變應(yīng)原含量,進(jìn)而會(huì)引致馬的呼吸道損傷問題[25]。選取適宜的干草調(diào)制手段,如干倉蒸制和浸泡[26],可有效降低干草中的呼吸性顆粒和微生物含量,且對干草中的非纖維多糖、粗蛋白質(zhì)和礦物質(zhì)等營養(yǎng)素含量無不利影響[27],有利于保證舍飼馬粗飼料的衛(wèi)生和清潔[28-29]。另外,干草的切割狀況同樣可影響運(yùn)動(dòng)馬的采食和腸道生理特性。研究結(jié)果顯示運(yùn)動(dòng)馬需要咀嚼性纖維,相比于顆粒狀草丸,完整干草可顯著提高運(yùn)動(dòng)馬的采食欲望、咀嚼次數(shù)及糞便pH,并縮短其站立時(shí)間,有利于維持其健康狀況[30]。

除曬制干草外,飼草的貯藏加工方式還有青貯、窖藏加工等。就營養(yǎng)素而言,相比于干草,窖藏半干草的粗蛋白質(zhì)含量和總能較高,其他營養(yǎng)物質(zhì)的保存質(zhì)量良好,基本與干草一致[31];就營養(yǎng)素消化利用率而言,Moore-Colyer等[32]的研究發(fā)現(xiàn),窖藏加工和青貯可顯著提高飼用牧草的生物利用效率,相比于干草,青貯和窖藏加工可顯著改善飼草的消化能、非淀粉多糖消化率及粗蛋白質(zhì)消化率。但貯藏天數(shù)會(huì)影響窖藏青干草質(zhì)量,隨著貯藏天數(shù)的增加,飼草中淀粉酶活性和乙醇含量均有所下降,窖藏半干草在貯存之前是否切割可影響馬的進(jìn)食行為和糞便特性,切割窖藏半干草飼喂馬匹的咀嚼率高而咀嚼次數(shù)較低,其糞便乙酸含量有所下降,pH有所升高[33]。

綜合以上的內(nèi)容,運(yùn)動(dòng)馬飼草最好采用窖藏半干草,飼喂完整飼草以提高其攝食時(shí)間并優(yōu)化運(yùn)動(dòng)馬腸道微環(huán)境,減少其CB,而飼喂干草時(shí)最好采用蒸制或浸泡處理以減少干草中的呼吸性顆粒和霉菌等致病因子,以期優(yōu)化運(yùn)動(dòng)馬呼吸道健康。

2.2 谷物類飼料替代對運(yùn)動(dòng)馬健康狀況的優(yōu)化作用

運(yùn)動(dòng)馬的高精料飼喂模式往往伴隨腸道炎癥、高血糖、胰島素抵抗、過度肥胖等健康問題,進(jìn)而引致馬代謝綜合征[34-35],會(huì)嚴(yán)重影響馬匹健康和競技水平。研究發(fā)現(xiàn),運(yùn)動(dòng)馬每天飼喂2.25 kg以上的干草可有效緩解高淀粉飼糧導(dǎo)致的腸道酸中毒和代謝問題,從而改善運(yùn)動(dòng)馬的健康狀況[36]。高纖維飼料可有效抑制馬代謝綜合征癥狀,基于運(yùn)動(dòng)馬的消化系統(tǒng)功能特性,需要保證運(yùn)動(dòng)馬一定的飼草供給量,同時(shí)選用更加健康的高能飼料原料替代運(yùn)動(dòng)馬飼糧中的谷物類飼料原料,從而改善運(yùn)動(dòng)馬健康狀況。

優(yōu)質(zhì)粗飼料是谷物類飼料替代的第一選擇,苜蓿干草在不同季節(jié)的可消化能及可消化粗蛋白質(zhì)含量均很高,可滿足高營養(yǎng)需求馬匹如運(yùn)動(dòng)馬、妊娠期與哺乳期母馬的營養(yǎng)需求[37],可部分替代谷物類飼料。并且,研究發(fā)現(xiàn),在飼糧中添加16%紫花苜蓿可顯著提高馬胃和糞便中結(jié)構(gòu)性多糖利用菌如纖維素分解菌、木聚糖分解菌、乳酸利用細(xì)菌等的比例,改善馬匹的消化道菌群結(jié)構(gòu)[38],有利于抑制高谷物飼糧導(dǎo)致的消化道菌群失衡,優(yōu)化其腸道健康狀況。優(yōu)質(zhì)粗飼料的另一特性為高粗蛋白質(zhì)含量,Essén-Gustavsson等[39]的研究指出高蛋白質(zhì)優(yōu)質(zhì)粗飼料還可提高運(yùn)動(dòng)馬的肌糖原和亮氨酸濃度,飼喂高蛋白質(zhì)飼草的運(yùn)動(dòng)馬在劇烈運(yùn)動(dòng)后短期內(nèi)肌肉支鏈氨基酸濃度仍維持較高水平,這就意味著高蛋白質(zhì)優(yōu)質(zhì)粗飼料有利于運(yùn)動(dòng)馬劇烈運(yùn)動(dòng)后的肌肉恢復(fù),而且適當(dāng)提高飼糧中粗蛋白質(zhì)含量可改善飼糧營養(yǎng)物質(zhì)的消化率和沉積量[40-41]。總之,優(yōu)質(zhì)粗飼料的營養(yǎng)密度和消化吸收率均處于較高水平,可在滿足運(yùn)動(dòng)馬營養(yǎng)需求的同時(shí)改善運(yùn)動(dòng)馬代謝和腸道健康狀況,所以優(yōu)質(zhì)粗飼料可部分替代谷物類飼料。

其他飼料原料如油脂、甜菜漿、大豆皮等也是谷物類飼料的優(yōu)質(zhì)替代品。油脂的能量高、易吸收,且熱增耗低,Williams等[42]發(fā)現(xiàn)用高脂肪和高纖維素飼糧代替高淀粉飼糧可有效降低母馬哺乳期血漿中葡萄糖和胰島素濃度,從而減緩母馬哺乳期的消化和代謝紊亂問題,說明在高纖維飼糧中添加油脂是一種谷物類飼料替代的有效措施。甜菜替代谷物類飼料的可行性研究顯示甜菜的可溶性纖維含量高,并可及時(shí)補(bǔ)充運(yùn)動(dòng)馬能量[43],而且在干草中添加甜菜漿后馬匹血漿中葡萄糖和胰島素濃度均未出現(xiàn)顯著提升[44],說明甜菜漿有潛力取代淀粉作為運(yùn)動(dòng)馬飼料的能量來源。大豆皮是一種高能量纖維飼料,在馬飼糧中采用大豆皮替代高達(dá)40%的精料補(bǔ)充劑可顯著提高可發(fā)酵碳水化合物消化率,并且不會(huì)引致血漿中葡萄糖濃度的顯著升高[45-46]。運(yùn)動(dòng)馬的谷物類飼料替代就是在改變其飼糧能量相關(guān)營養(yǎng)組分的同時(shí)保證能量供給量,優(yōu)質(zhì)粗飼料、油脂、甜菜漿、大豆皮均可滿足這一需求,且這些谷物類飼料替代品均可有效抑制谷物類飼料誘導(dǎo)的腸道菌群失衡,從而改善運(yùn)動(dòng)馬的腸道和代謝健康狀態(tài)。

2.3 非營養(yǎng)性飼料添加劑對運(yùn)動(dòng)馬能量飼料代謝功能的改善作用

運(yùn)動(dòng)馬腸道菌群結(jié)構(gòu)是決定其消化道代謝健康的主要因素,通過外源添加益生菌、纖維素酶等飼料添加劑可影響馬腸道菌群結(jié)構(gòu),調(diào)節(jié)其飼糧發(fā)酵過程和降解效率,可在一定程度上改善馬匹健康狀況。釀酒酵母是草食動(dòng)物飼養(yǎng)中常用的益生菌,在高纖維飼糧中添加釀酒酵母可改善馬的干物質(zhì)、有機(jī)質(zhì)及纖維素(中性洗滌纖維和酸性洗滌纖維)表觀消化率,顯著提高馬對高纖維飼糧的生物利用率[47-48],而且補(bǔ)充活酵母菌可減少馬匹胃內(nèi)淀粉降解菌的數(shù)量,從而減少胃內(nèi)淀粉降解比例[49],優(yōu)化胃壁健康狀況。除酵母菌外,Elghandour等[50]的研究顯示,在飼糧中添加香腸乳桿菌可改善馬后腸道高纖維飼糧如燕麥秸稈的消化率,提高甲烷、二氧化碳?xì)怏w的產(chǎn)量。針對高淀粉飼糧,可通過外源添加埃氏巨型球菌降低馬盲腸中乳酸的積累,穩(wěn)定馬匹盲腸pH,并增強(qiáng)其盲腸微生物發(fā)酵活性[51]??傊?,益生菌可直接影響腸道菌群結(jié)構(gòu),提高馬匹的纖維素或淀粉利用率,改善運(yùn)動(dòng)馬的能量飼料利用效率。

運(yùn)動(dòng)馬腸道中纖維素降解主要依賴微生物發(fā)酵作用,通過外源添加纖維素酶可改善飼喂高纖維飼糧馬匹的干草(燕麥秸稈)攝入量和養(yǎng)分消化率,并可提高血液總蛋白濃度,優(yōu)化馬的飼糧利用效率和營養(yǎng)狀況[52],進(jìn)而更好地滿足運(yùn)動(dòng)馬的能力需求,減少谷物類飼料在飼糧中的比例。總之,非營養(yǎng)性飼料添加劑如釀酒酵母、乳桿菌等益生菌及纖維素酶均可改善馬匹對能量飼料的利用效率,改善其能量代謝功能狀態(tài)。

2.4 飼草給料方式對運(yùn)動(dòng)馬健康狀況的有利影響

運(yùn)動(dòng)馬的飼養(yǎng)管理是影響運(yùn)動(dòng)馬競技性能和心理健康的一個(gè)重要因素,尤其是高谷物飼糧的攝入速度快,往往會(huì)伴隨高頻率CB;而粗飼料的攝量大且攝入速度慢,攝食時(shí)間延長,可有效控制運(yùn)動(dòng)馬的CB[53]。飼草給料方式可影響馬的采食行為和飼喂率。在飼喂成年馬時(shí),干草網(wǎng)可顯著降低飼喂率,延長馬的采食時(shí)間[54],而且小網(wǎng)眼或多層干草網(wǎng)供給干草時(shí)可在不改變馬匹采食量的前提下,有效延長馬匹的咀嚼時(shí)間,減少CB[55-57]。另外,也有研究采用新型的慢速進(jìn)料器進(jìn)行干草飼喂,亦可改善馬匹行為狀況[58],是一種有效的福利設(shè)備??傊?,通過采用干草網(wǎng)、給料器等改變飼草的給料方式可有效延長馬匹攝食時(shí)間,減少運(yùn)動(dòng)馬CB。

3 小結(jié)

運(yùn)動(dòng)馬的能量飼料供給需充分考慮粗飼料和谷物類飼料的平衡使用,既要保證運(yùn)動(dòng)馬獲得充足的能量,又要保證其健康狀況。我們結(jié)合近幾年運(yùn)動(dòng)馬相關(guān)營養(yǎng)和飼養(yǎng)管理相關(guān)研究內(nèi)容,提出幾點(diǎn)運(yùn)動(dòng)馬能量供給的優(yōu)化方案,首先需采用適宜的加工貯存工藝如窖藏等優(yōu)化粗飼料的生物利用率,在此前提上保證運(yùn)動(dòng)馬的飼草質(zhì)量,建議采用干草網(wǎng)、小型給料器等設(shè)備將優(yōu)質(zhì)牧草如紫花苜蓿等喂給運(yùn)動(dòng)馬,在此基礎(chǔ)上,可適度降低運(yùn)動(dòng)馬飼糧中的谷物類飼料比例;還可在運(yùn)動(dòng)馬飼糧中添加油脂、甜菜漿、大豆皮等來替代部分谷物類飼料,也可較好地應(yīng)對谷物類飼料引致的代謝問題;另外,益生菌和外源纖維素酶等非營養(yǎng)性飼料添加劑也可在一定程度上改善馬匹的能量利用效率及健康狀況。但運(yùn)動(dòng)馬的飼糧配合及能量代謝研究尚處于較低水平,還需綜合考慮以上幾個(gè)方面并結(jié)合運(yùn)動(dòng)馬的發(fā)育階段差異性,針對運(yùn)動(dòng)馬各年齡段提出合理的能量供給模式,并按照優(yōu)化策略調(diào)整后運(yùn)動(dòng)馬的腸道菌群結(jié)構(gòu)和相關(guān)代謝指標(biāo)變化調(diào)整飼糧結(jié)構(gòu),以期獲得高競技水平的運(yùn)動(dòng)馬,并改善其健康狀況。

參考文獻(xiàn)

[1]

PRATT-PHILLIPS S E. Feeding practices and nutrient intakes among elite show jumpers[J]. Journal of Equine Veterinary Science, 2016, 43: 39-43. DOI:10.1016/j.jevs.2016.04.097

[2]

DICKS L M T, BOTHA M, DICKS E, et al. The equine gastro-intestinal tract:an overview of the microbiota, disease and treatment[J]. Livestock Science, 2014, 160: 69-81. DOI:10.1016/j.livsci.2013.11.025

[3]

LUTHERSSON N, NIELSEN K H, HARRIS P, et al. Risk factors associated with equine gastric ulceration syndrome (EGUS) in 201 horses in Denmark[J]. Equine Veterinary Journal, 2009, 41(7): 625-630. DOI:10.2746/042516409X441929

[4]

FLORES R S, BYRON C R, KLINE K H. Effect of feed processing method on average daily gain and gastric ulcer development in weanling horses[J]. Journal of Equine Veterinary Science, 2011, 31(3): 124-128. DOI:10.1016/j.jevs.2011.01.001

[5]

RICHARDSON K, MURRAY J A M D. Fiber for performance horses:a review[J]. Journal of Equine Veterinary Science, 2016, 46: 31-39. DOI:10.1016/j.jevs.2016.02.234

[6]

KAYA-KARASU G, HUNTINGTON P, IBEN C, et al. Feeding and management practices for racehorses in turkey[J]. Journal of Equine Veterinary Science, 2018, 61: 108-113. DOI:10.1016/j.jevs.2017.04.009

[7]

HARRIS P. Feeding management of elite endurance horses[J]. Veterinary Clinics of North America:Equine Practice, 2009, 25(1): 137-153. DOI:10.1016/j.cveq.2009.01.005

[8]

LARSSON A, MVLLER C E. Owner reported management, feeding and nutrition-related health problems in Arabian horses in Sweden[J]. Livestock Science, 2018, 215: 30-40. DOI:10.1016/j.livsci.2017.03.001

[9]

BELKAID Y, HAND T W. Role of the microbiota in immunity and inflammation[J]. Cell, 2014, 157(1): 121-141. DOI:10.1016/j.cell.2014.03.011

[10]

EL AIDY S, VAN DEN BOGERT B, KLEEREBEZEM M. The small intestine microbiota, nutritional modulation and relevance for health[J]. Current Opinion in Biotechnology, 2015, 32: 14-20. DOI:10.1016/j.copbio.2014.09.005

[11]

KA?UZNA-CZAPLI?SKA J, GATAREK P, CHARTRAND M S, et al. Is there a relationship between intestinal microbiota, dietary compounds, and obesity?[J]. Trends in Food Science & Technology, 2017, 70: 105-113.

[12]

WILLING B, V?R?S A, ROOS S, et al. Changes in faecal bacteria associated with concentrate and forage-only diets fed to horses in training[J]. Equine Veterinary Journal, 2009, 41(9): 908-914. DOI:10.2746/042516409X447806

[13]

DYER J, MEREDIZ E F C, SALMON K S H, et al. Molecular characterisation of carbohydrate digestion and absorption in equine small intestine[J]. Equine Veterinary Journal, 2002, 34(4): 349-358.

[14]

LACOMBE V A, HINCHCLIFF K W, KOHN C W, et al. Effects of feeding meals with various soluble-carbohydrate content on muscle glycogen synthesis after exercise in horses[J]. American Journal of Veterinary Research, 2004, 65(7): 916-923. DOI:10.2460/ajvr.2004.65.916

[15]

BULMER L, MCBRIDE S, WILLIAMS K, et al. The effects of a high-starch or high-fibre diet on equine reactivity and handling behaviour[J]. Applied Animal Behaviour Science, 2015, 165: 95-102. DOI:10.1016/j.applanim.2015.01.008

[16]

DESTREZ A, GRIMM P, CéZILLY F, et al. Changes of the hindgut microbiota due to high-starch diet can be associated with behavioral stress response in horses[J]. Physiology & Behavior, 2015, 149: 159-164.

[17]

PRATT-PHILLIPS S, KUTZNER-MULLIGAN J, MARVIN R, et al. The effect of feeding two or three meals per day of either low or high nonstructural carbohydrate concentrates on postprandial glucose and insulin concentrations in horses[J]. Journal of Equine Veterinary Science, 2014, 34(11/12): 1251-1256.

[18]

VAN DEN BERG M, HOSKIN S O, ROGERS C W, et al. Fecal pH and microbial populations in thoroughbred horses during transition from pasture to concentrate feeding[J]. Journal of Equine Veterinary Science, 2013, 33(4): 215-222. DOI:10.1016/j.jevs.2012.06.004

[19]

COENEN M, KIENZLE E, VERVUERT I, et al. Recent German developments in the formulation of energy and nutrient requirements in horses and the resulting feeding recommendations[J]. Journal of Equine Veterinary Science, 2011, 31(5/6): 219-229.

[20]

HILL J. Impacts of nutritional technology on feeds offered to horses:a review of effects of processing on voluntary intake, digesta characteristics and feed utilisation[J]. Animal Feed Science and Technology, 2007, 138(2): 92-117. DOI:10.1016/j.anifeedsci.2007.06.018

[21]

HYM?LLER L, DICKOW M S, BR?KNER C, et al. Cereal starch, protein, and fatty acid pre-caecal disappearance is affected by both feed technological treatment and efficiency of the chewing action in horses[J]. Livestock Science, 2012, 150(1/2/3): 159-169.

[22]

MüLLER C E. Equine ingestion of haylage harvested at different plant maturity stages[J]. Applied Animal Behaviour Science, 2011, 134(3/4): 144-151.

[23]

MüLLER C E. Equine digestion of diets based on haylage harvested at different plant maturities[J]. Animal Feed Science and Technology, 2012, 177(1/2): 65-74.

[24]

SICILIANO P D, GILL J C, BOWMAN M A. Effect of sward height on pasture nonstructural carbohydrate concentrations and blood glucose/insulin profiles in grazing horses[J]. Journal of Equine Veterinary Science, 2017, 57: 29-34. DOI:10.1016/j.jevs.2017.06.004

[25]

SéGUIN V, LEMAUVIEL-LAVENANT S, GARON D, et al. Effect of agricultural and environmental factors on the hay characteristics involved in equine respiratory disease[J]. Agriculture, Ecosystems & Environment, 2010, 135(3): 206-215.

[26]

CARSLAKE H B, ARGO C M, PINCHBECK G L, et al. Insulinaemic and glycaemic responses to three forages in ponies[J]. The Veterinary Journal, 2018, 235: 83-89. DOI:10.1016/j.tvjl.2018.03.008

[27]

ARGO C M, DUGDALE A H A, MCGOWAN C M. Considerations for the use of restricted, soaked grass hay diets to promote weight loss in the management of equine metabolic syndrome and obesity[J]. The Veterinary Journal, 2015, 206(2): 170-177. DOI:10.1016/j.tvjl.2015.07.027

[28]

MOORE-COLYER M J S, TAYLOR J L E, JAMES R. The effect of steaming and soaking on the respirable particle, bacteria, mould, and nutrient content in hay for horses[J]. Journal of Equine Veterinary Science, 2016, 39: 62-68. DOI:10.1016/j.jevs.2015.09.006

[29]

HUMER E, HOLLMANN M, ST?GMVLLER G, et al. Steaming conditions enhance hygienic quality of the compromised equine hay with minimal losses of nonfiber carbohydrates[J]. Journal of Equine Veterinary Science, 2019, 74: 28-35. DOI:10.1016/j.jevs.2018.12.024

[30]

ELIA J B, ERB H N, HOUPT K A. Motivation for hay:effects of a pelleted diet on behavior and physiology of horses[J]. Physiology & Behavior, 2010, 101(5): 623-627.

[31]

BERGERO D, PEIRETTI P G. Intake and apparent digestibility of permanent meadow hay and haylage in ponies[J]. Journal of Equine Veterinary Science, 2011, 31(2): 67-71. DOI:10.1016/j.jevs.2010.12.006

[32]

MOORE-COLYER M J S, LONGLAND A C. Intakes and in vivo apparent digestibilities of four types of conserved grass forage by ponies[J]. Animal Science, 2000, 71(3): 527-534. DOI:10.1017/S1357729800055405

[33]

MVLLER C E. Long-stemmed vs. cut haylage in bales-effects on fermentation, aerobic storage stability, equine eating behaviour and characteristics of equine faeces[J]. Animal Feed Science and Technology, 2009, 152(3/4): 307-321.

[34]

MCCUE M E, GEOR R J, SCHULTZ N. Equine metabolic syndrome:a complex disease influenced by genetics and the environment[J]. Journal of Equine Veterinary Science, 2015, 35(5): 367-375. DOI:10.1016/j.jevs.2015.03.004

[35]

SECOMBE C J, LESTER G D. The role of diet in the prevention and management of several equine diseases[J]. Animal Feed Science and Technology, 2012, 173(1/2): 86-101.

[36]

WILLIAMSON A, ROGERS C W, FIRTH E C. A survey of feeding, management and faecal pH of Thoroughbred racehorses in the North Island of New Zealand[J]. New Zealand Veterinary Journal, 2007, 55(6): 337-341. DOI:10.1080/00480169.2007.36790

[37]

DEBOER M L, HATHAWAY M R, KUHLE K J, et al. Glucose and insulin response of horses grazing alfalfa, perennial cool-season grass, and teff across seasons[J]. Journal of Equine Veterinary Science, 2018, 68: 33-38. DOI:10.1016/j.jevs.2018.04.008

[38]

JULLIAND S, MARTIN A, JULLIAND V. Effect of dehydrated alfalfa on equine gastric and faecal microbial ecosystems[J]. Livestock Science, 2018, 215: 16-20. DOI:10.1016/j.livsci.2017.05.005

[39]

ESSéN-GUSTAVSSON B, CONNYSSON M, JANSSON A. Effects of crude protein intake from forage-only diets on muscle amino acids and glycogen levels in horses in training[J]. Equine Veterinary Journal, 2010, 42(Suppl.38): 341-346.

[40]

劉凱, 趙芳, 李曉斌, 等. 不同纖維和蛋白質(zhì)水平飼糧對2歲焉耆馬消化代謝、血漿生化指標(biāo)及體增重的影響[J]. 動(dòng)物營養(yǎng)學(xué)報(bào), 2016, 28(6): 1935-1944. DOI:10.3969/j.issn.1006-267x.2016.06.037

[41]

劉凱, 李曉斌, 陳學(xué)濟(jì), 等. 不同纖維和蛋白質(zhì)水平飼糧對12月齡焉耆馬營養(yǎng)物質(zhì)消化代謝、血漿生化指標(biāo)的影響[J]. 動(dòng)物營養(yǎng)學(xué)報(bào), 2016, 28(4): 1274-1284. DOI:10.3969/j.issn.1006-267x.2016.04.040

[42]

WILLIAMS C A, KRONFELD D S, STANIAR W B, et al. Plasma glucose and insulin responses of Thoroughbred mares fed a meal high in starch and sugar or fat and fiber[J]. Journal of Animal Science, 2001, 79(8): 2196-2201. DOI:10.2527/2001.7982196x

[43]

BR?KNER C, BACH KNUDSEN K E, KARAMAN I, et al. Chemical and physicochemical characterisation of various horse feed ingredients[J]. Animal Feed Science and Technology, 2012, 177(1/2): 86-97.

[44]

JENSEN R B, AUSTB? D, BLACHE D, et al. The effect of feeding barley or hay alone or in combination with molassed sugar beet pulp on the metabolic responses in plasma and caecum of horses[J]. Animal Feed Science and Technology, 2016, 214: 53-65. DOI:10.1016/j.anifeedsci.2016.02.003

[45]

BORGHI R T, RODRIGUES P G, MOURA R S, et al. Digestibility of nutrients and digestive health in horses submitted to moderate exercise and supplemented with diets formulated with soybean hulls[J]. Journal of Equine Veterinary Science, 2017, 59: 118-125. DOI:10.1016/j.jevs.2017.10.003

[46]

CIPRIANO-SALAZAR M, ADEGBEYE M J, ELGHANDOUR M M M Y, et al. The dietary components and feeding management as options to offset digestive disturbances in horses[J]. Journal of Equine Veterinary Science, 2019, 74: 103-110. DOI:10.1016/j.jevs.2018.12.017

[47]

AGAZZI A, FERRONI M, FANELLI A, et al. Evaluation of the effects of live yeast supplementation on apparent digestibility of high-fiber diet in mature horses using the acid insoluble ash marker modified method[J]. Journal of Equine Veterinary Science, 2011, 31(1): 13-18. DOI:10.1016/j.jevs.2010.11.012

[48]

SALEM A Z M, ELGHANDOUR M M Y, KHOLIF A E, et al. Influence of feeding horses a high fiber diet with or without live yeast cultures supplementation on feed intake, nutrient digestion, blood chemistry, fecal coliform count, and in vitro fecal fermentation[J]. Journal of Equine Veterinary Science, 2016, 39: 12-19. DOI:10.1016/j.jevs.2015.08.020

[49]

JULLIAND S, MARTIN A, JULLIAND V. Effect of live yeast supplementation on gastric ecosystem in horses fed a high-starch diet[J]. Livestock Science, 2018, 215: 25-29. DOI:10.1016/j.livsci.2018.01.007

[50]

ELGHANDOUR M M Y, KHUSRO A, GREINER R, et al. Horse fecal methane and carbon dioxide production and fermentation kinetics influenced by Lactobacillus farciminis-supplemented diet[J]. Journal of Equine Veterinary Science, 2018, 62: 98-101. DOI:10.1016/j.jevs.2017.12.006

[51]

DOUTHIT T L, LEVENTHAL H R, UWITUZE S, et al. Megasphaera elsdenii attenuates lactate accumulation in cultures of equine cecal microorganisms provided with starch or oligofructose[J]. Journal of Equine Veterinary Science, 2019, 74: 1-8. DOI:10.1016/j.jevs.2018.12.013

[52]

SALEM A Z M, ELGHANDOUR M M Y, KHOLIF A E, et al. The effect of feeding horses a high fiber diet with or without exogenous fibrolytic enzymes supplementation on nutrient digestion, blood chemistry, fecal coliform count, and in vitro fecal fermentation[J]. Journal of Equine Veterinary Science, 2015, 35(9): 735-743. DOI:10.1016/j.jevs.2015.07.009

[53]

BULENS A, VAN BEIRENDONCK S, VAN THIELEN J, et al. The enriching effect of non-commercial items in stabled horses[J]. Applied Animal Behaviour Science, 2013, 143(1): 46-51. DOI:10.1016/j.applanim.2012.11.012

[54]

GLUNK E C, HATHAWAY M R, WEBER W J, et al. The effect of hay net design on rate of forage consumption when feeding adult horses[J]. Journal of Equine Veterinary Science, 2014, 34(8): 986-991. DOI:10.1016/j.jevs.2014.05.006

[55]

ELLIS A D, FELL M, LUCK K, et al. Effect of forage presentation on feed intake behaviour in stabled horses[J]. Applied Animal Behaviour Science, 2015, 165: 88-94. DOI:10.1016/j.applanim.2015.01.010

[56]

ELLIS A D, REDGATE S, ZINCHENKO S, et al. The effect of presenting forage in multi-layered haynets and at multiple sites on night time budgets of stabled horses[J]. Applied Animal Behaviour Science, 2015, 171: 108-116. DOI:10.1016/j.applanim.2015.08.012

[57]

MORGAN K, KJELLBERG L, KARLSSON BUDDE L, et al. Pilot study on work load management and feed intake time when feeding horses with small mesh haynets[J]. Livestock Science, 2016, 186: 63-68. DOI:10.1016/j.livsci.2015.06.005

[58]

ROCHAIS C, HENRY S, HAUSBERGER M. "Hay-bags" and "Slow feeders":testing their impact on horse behaviour and welfare[J]. Applied Animal Behaviour Science, 2018, 198: 52-59. DOI:10.1016/j.applanim.2017.09.019

相關(guān)知識

The Health Benefits of Dietary Fibre
妊娠期糖尿病孕婦一日門診飲食個(gè)體化指導(dǎo)對血糖控制、體質(zhì)量增速和妊娠結(jié)局的影響分析
初中八年級英語健康環(huán)保類閱讀.doc
Soft electronics for advanced infant monitoring,Materials Today
英語合理健康飲食建議 英語合理健康飲食建議怎么寫
身體護(hù)理ems減肥瘦身超聲波按摩器身體按摩器產(chǎn)品發(fā)光二極管光療美容產(chǎn)品脂肪燃燒器 - Buy Ultrasound Cavitation Machine Body Slimming Fat Burning Machine body Care Products sonic Ion Ems Body Sliming Instrument Product on Alibaba.com
問題解決與減重效果關(guān)系:自我控制飲食自我效能中介作用
結(jié)構(gòu)健康監(jiān)測的傳感器優(yōu)化布置研究進(jìn)展與展望
低碳飲食vs低脂飲食,誰的效果好?誰更健康?
“同一健康”框架下的城市環(huán)境微生物及其優(yōu)化設(shè)計(jì)

網(wǎng)址: Improvement Strategies for Dietary Energy Supply of Racehorses http://m.u1s5d6.cn/newsview172434.html

推薦資訊