結(jié)構(gòu)健康監(jiān)測(cè)的傳感器優(yōu)化布置研究進(jìn)展與展望
參考文獻(xiàn)
[1]歐進(jìn)萍. 重大工程結(jié)構(gòu)的智能檢測(cè)與健康診斷[J]. 工程力學(xué), 2002, 增刊: 44-53.
Ou Jinping. Accumulative damage and safety assessment of key infrastructures[J], Engineering Mechanics, 2002, supplement: 44-53.
[2]馬宏偉, 楊桂通. 結(jié)構(gòu)損傷探測(cè)的基本方法和研究進(jìn)展[J]. 力學(xué)進(jìn)展, 1999, 29(4): 513-527.
Ma Hongwei, Yang Guitong. Methods and advances of structural damage detection[J]. Advances in Mechanics, 1999, 29(4): 513-527.
[3]袁慎芳,邱雷,吳鍵, 等.大型飛機(jī)的發(fā)展對(duì)結(jié)構(gòu)健康監(jiān)測(cè)的需求與挑戰(zhàn)[J].航空制造技術(shù),2009,(22):62-67.
Yuan Shenfang, Qiu Lei, Wu Jian, et al. Challenge in structural health monitoring of large aircraft development[J]. Aeronautical Manufacturing Technology,2009,(22):62-67.
[4]武湛君,渠曉溪,高東岳, 等.航空航天復(fù)合材料結(jié)構(gòu)健康監(jiān)測(cè)技術(shù)研究進(jìn)展[J].航空制造技術(shù),2016,(15):92-102,109.
Wu Zhanjun, Qu Xiaoxi, Gao Dongyue, et al. Research Progress on Structural Health Monitoring Technology for Aerospace Composite Structure [J]. Aeronautical Manufacturing Technology,2016,(15):92-102,109.
[5]Ko J M, Ni Y Q. Technology developments in structural health monitoring of large-scale bridges[J]. Engineering structures, 2005, 27(12): 1715-1725.
[6]李惠, 鮑躍全, 李順龍, 賴馬樹金. 結(jié)構(gòu)健康監(jiān)測(cè)數(shù)據(jù)科學(xué)與工程[M]. 科學(xué)出版社, 2016.
Li Hui, Bao yuequan, Li Shunlong, et al. Data science and engineering for structural health monitoring[M]. Science Press, 2016.
[7]卿新林,王奕首,趙琳.結(jié)構(gòu)健康監(jiān)測(cè)技術(shù)及其在航空航天領(lǐng)域中的應(yīng)用[J].實(shí)驗(yàn)力學(xué),2012,27(5):517-526.
Qing Xinlin, Wang Yishou, Zhao Lin. Structural health monitoring technology and its application in aeronautics and astronautics[J]. Journal of Experimental Mechanics, 2012, 27(5):517-52.
[8]吳智深, 張建. 結(jié)構(gòu)健康監(jiān)測(cè)先進(jìn)技術(shù)及理論[M]. 科學(xué)出版社, 2015.
Wu Zhishen, Zhang Jian. Advanced technology and theory of structural health monitoring[M]. Science Press, 2015.
[9]姜紹飛, 吳兆旗. 結(jié)構(gòu)健康監(jiān)測(cè)與智能信息處理技術(shù)及應(yīng)用[M]. 中國建筑工業(yè)出版社, 2011.
Jiang Shaofei, Wu Zhaoqi. Structural health monitoring and intelligent information processing technology and its application[M]. China Architecture & Building Press, 2011.
[10]伊廷華, 李宏男. 結(jié)構(gòu)健康監(jiān)測(cè)[M]. 中國建筑工業(yè)出版社, 2009.
Yi Tinghua, Li Hongnan. Structural health monitoring[M]. China Architecture & Building Press, 2009.
[11]劉偉. 空間網(wǎng)格結(jié)構(gòu)健康監(jiān)測(cè)系統(tǒng)關(guān)鍵技術(shù)研究[D]. 哈爾濱工業(yè)大學(xué), 2009.
Liu Wei. Study on key technologies of health monitoring system for spatial lattice structures. [PhD Thesis]. Harbin Institute of Technology, 2009.
[12]Li J, Law S S. Substructural Damage Detection with Incomplete Information of the Structure[J]. Journal of Applied Mechanics, 2012, 79(4): 1003.
[13]Lynch J P, Loh K J. A summary review of wireless sensors and sensor networks for structural health monitoring[J]. Shock and Vibration Digest, 2006, 38(2): 91-130.
[14]伊廷華, 王相, 李宏男. 考慮敏感性和魯棒性相協(xié)調(diào)的多維傳感器優(yōu)化布置方法[J]. 振動(dòng)工程學(xué)報(bào), 2013, 26(4): 467-476.
Yi Tinghua, Wang Xiang, Li Hongnan. Optimal multi-dimensional sensor placement in consideration of the coordination of sensitivity and robustness [J]. Journal of Vibration Engineering, 2013, 26(4): 467-476.
[15]周翠, 李東升, 李宏男. 結(jié)構(gòu)模態(tài)測(cè)試傳感器位置優(yōu)選[J]. 振動(dòng)工程學(xué)報(bào), 2014(1): 84-90.
Zhou Cui, Li Dongsheng, Li Hongnan. Optimal multi-dimensional sensor placement in consideration of the coordination of sensitivity and robustness [J]. Journal of Vibration Engineering, 2014(1): 84-90.
[16]李東升, 張瑩, 任亮,等. 結(jié)構(gòu)健康監(jiān)測(cè)中的傳感器布置方法及評(píng)價(jià)準(zhǔn)則[J]. 力學(xué)進(jìn)展, 2011, 41(1):39-50.
Li Dongsheng, Zhang Ying, Ren Liang, et al. Sensor deployment for structural health monitoring and their evaluation [J]. Advances in Mechanics, 2011, 41(1):39-50.
[17]董曉馬. 智能結(jié)構(gòu)的損傷診斷及傳感器優(yōu)化配置研究[D]. 東南大學(xué), 2006.
Dong Xiaoma. Research on damage self-diagnosing and sensor optimal placement of smart srtuctures. [PhD Thesis]. Southeast University, 2006.
[18]孫小猛. 基于模態(tài)觀測(cè)的結(jié)構(gòu)健康監(jiān)測(cè)的傳感器優(yōu)化布置方法研究[D]. 大連理工大學(xué), 2009.
Sun Xiaomeng. Study on optimal sensor placement for structural health monitoring with modal measurments. [PhD Thesis]. Dalian University of Technology, 2009.
[19]徐典. 結(jié)構(gòu)損傷識(shí)別方法與傳感器優(yōu)化布置研究[D]. 重慶大學(xué), 2011.
Xu Dian. Studies on structural damage detection and optimal sensor placement. [PhD Thesis]. Chongqing University, 2011.
[20]劉福強(qiáng), 張令彌. 作動(dòng)器/傳感器優(yōu)化配置的研究進(jìn)展[J]. 力學(xué)進(jìn)展, 2000, 30(4): 526-516.
Liu Fuqiang, Zhang Lingmi. Advances in optimal placement of actuators and sensors [J]. Advances in Mechanics, 2000, 30(4): 526-516.
[21]費(fèi)慶國, 李愛群, 繆長(zhǎng)青, 等. 基于主列篩選的動(dòng)態(tài)測(cè)試傳感器配置方法研究[J]. 力學(xué)學(xué)報(bào), 2008, 40(4): 543-549.
Fei Qingguo, Li Aiqun, Miao Changqing, et al. Vibration sensor placement method based on principal subset selection [J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(4): 543-549.
[22]Li D S, Li H N, Frizen C P. On optimal sensor placement criterion for structural health monitoring with representative least squares method[J]. Key Engineering Materials, 2009, 413-414: 383-391
[23]李東升, 李宏男, 王國新, 等. 傳感器布設(shè)中有效獨(dú)立法的簡(jiǎn)捷快速算法[J]. 防災(zāi)減災(zāi)工程學(xué)報(bào), 2009, 29(1): 103-108.
Li Dongsheng, Li Hongnan, Wang Guoxin, et al. Simple and fast computation algorithm of the effective independence for sensor placement [J]. Journal of Disaster Prevention and Mitigation Engineering, 2009, 29(1): 103-108.
[24]劉偉, 高維成, 李惠, 等. 基于有效獨(dú)立的改進(jìn)傳感器優(yōu)化布置方法研究[J]. 振動(dòng)與沖擊, 2013, 32(6): 54-62.
Liu Wei, Gao Weicheng, Li Hui, et al. Improved optimal sensor placement methods based on effective independence [J]. Journal of Vibration and Shock, 2013, 32(6): 54-62.
[25]Hernandez E M. Efficient Sensor Placement for State Estimation in Structural Dynamics[J]. Mechanical Systems & Signal Processing, 2017, 85: 789-800.
[26]Mercer J F, Aglietti G S, Kiley A M. Model Reduction and Sensor Placement Methods for Finite Element Model Correlation[J]. Aiaa Journal, 2016, 54(12): 1-14.
[27]Chen B, Huang Z, Zheng D, et al. A Hybrid Method of Optimal Sensor Placement for Dynamic Response Monitoring of Hydro-structures[J]. International Journal of Distributed Sensor Networks, 2017, 13(5): 155014771770772.
[28]Yang C, Lu Z X, Yang Z Y, Liang K. Parameter identification for structural dynamics based on interval analysis algorithm [J]. Acta Astronautica, 2018, 145: 131-140.
[29]Iliopoulos A, Shirzadeh R, Weijtjens W, et al. A Modal Decomposition and Expansion Approach for Prediction of Dynamic Responses on a Monopile Offshore Wind Turbine Using a Limited Number of Vibration Sensors[J]. Mechanical Systems & Signal Processing, 2016, s 68-69: 84-104.
[30]Ostachowicz W, Soman R, Malinowski P. Optimization of sensor placement for structural health monitoring: a review[J]. Structural Health Monitoring, 2019: 1475921719825601.
[31]劉效堯, 蔡健, 劉暉. 橋梁損傷診斷[M]. 人民交通出版社, 2002.
Liu Xiaoyao, Cai Jian, Liu hui. Bridge damage diagnoses [M]. China Communications Press, 2002.
[32]Feng S, Jia J Q. Acceleration sensor placement technique for vibration test in structural health monitoring using microhabitat frog-leaping algorithm[J]. Structural Health Monitoring, 2017 (1) :147592171668837.
[33]Yi T H, Li H N, Gu M. Optimal sensor placement for structural health monitoring based on multiple optimization strategies[J]. Structural Design of Tall and Special Buildings, 2011, 20(7): 881-900.
[34]Yi T H, Li H N, Zhang X D. A modified monkey algorithm for optimal sensor placement in structural health monitoring[J]. Smart Materials and Structures, 2012, 21(10): 105033.
[35]He C, Xing J C, Li J L, et al. A Combined Optimal Sensor Placement Strategy for the Structural Health Monitoring of Bridge Structures[J]. International Journal of Distributed Sensor Networks,2013,(2013-11-26), 2013, 2013(4):1-9.
[36]Jia J, Feng S, Liu W. A triaxial accelerometer monkey algorithm for optimal sensor placement in structural health monitoring[J]. Measurement Science & Technology, 2015, 26(6).
[37]Kammer D C. Sensor Placement for On-orbit Modal Identification and Correlation of Large Space Structures[J]. Journal of Guidance, Control and Dynamics, 1991, 14: 251-259.
[38]Carne T G, Dohrmann C R. A modal test design strategy for model correlation[C]. In: Proceedings of the 13th International Modal Analysis Conference, Nashcille, TN, USA, 1995.
[39]Heylen W, Lammens S. Modal analysis theory and testing[M]. Katholieke Unversiteit Leuven, 1998.
[40]DeClerck J P, Avitable P. Development of several new tools for pre-test evaluation[C]. In: Proceedings of the 16th International Modal Analysis Conference, Orlando, Fl, USA, 1998.
[41]Udwadia F E. Methodology for optimum sensor locations for parameter identification in dynamic systems[J]. Journal of Engineering Mechanics-ASCE, 1994, 120: 36-39.
[42]Papadopoulos M, Garicia E. Sensor placement methodologies for dynamic testing[J]. AIAA Journal, 1998, 36:256-263.
[43]Glassburn R S. Evaluation of sensor placement algorithms for on-orbit identification of space platforms[D]. Kentucky: Lexington, 1994.
[44]Chung Y T, Moore D. Selection of measurement locations for experimental modal analysis[C]. In: Proceedings of the 11th International Modal Analysis Conference, Orlando, Fl, USA, 1993.
[45]Pickrel C R. A practical approach to modal pretest design[J]. Mechanical System and Singnal Processing, 1999, 13: 271-295.
[46]Schedlinski C, Link M. An approach to optimal pick-up and exciter placement[C]. In: Proceedings of the 14th International Modal Analysis Conference, Orlando, Fl, USA, 1996.
[47]Park Y S, Kim H B. Sensor placement guide for model comparison and improvement[C]. In: Proceedings of the 14th international Modal Analysis Conference, Orlando, Fl, SA, 1996.
[48]Reynier M, Abou-Kandil H. Sensor location for updating problems[J]. Mechanical System and Singal Processing, 1999, 13(2): 297-314.
[49]Cherng A P. Optimal sensor placement for modal parameter identification using signal subspace correlation techniques[J]. Mechanical Systems and Signal Processing, 1999, 17(2): 361-378.
[50]Penny J, Friswell M I, Garvey S D. Automatic choice of measurement locations for modal survey test[J]. AIAA Journal, 1994, 32: 407-414.
[51]Ewins D J. Modal testing: theory, practice and application[M]. Research Studies Press, 2000.
[52]Friswell M I, Mottershead J E. Finite element model updating in structural dynamics[M]. Kluwer Academic Publisher, 1995.
[53]Flanigan C C, Botos C D. Automated selection of accelerometer locations for modal survey test. In: Proceedings of the 10th International Modal Analysis Conference, Orlando, Fl, USA, 1992
[54]Mercer J F, Aglietti G S, Kiley A M. Model reduction and sensor placement methods for finite element model correlation[J]. AIAA Journal, 2016, 54(12): 1-14.
[55]Meo M, Zumpano G. On the optimal sensor placement techniques for a bridge structure[J]. Engineering Structures, 2005, 27(10):1488-1497.
[56]Li D S, Li H N, Frizen C P. The connection between effective independence and modal kinetic energy methods for sensor placement. Journal of Sound and Vibration, 2007, 305: 945-955
[57]楊雅勛, 郝憲武, 孫磊. 基于能量系數(shù)-有效獨(dú)立法的橋梁結(jié)構(gòu)傳感器優(yōu)化布置[J]. 振動(dòng)與沖擊, 2010, 29(11): 119-123.
Yang Yaxun, Hao Xianwu, Sun Lei. Optimal placement of sensors for a bridge structure based on energy coefficient-effective independence method [J]. Journal of Vibration and Shock, 2010, 29(11): 119-123.
[58]詹杰子, 余嶺. 傳感器優(yōu)化布置的有效獨(dú)立-改進(jìn)模態(tài)應(yīng)變能方法[J]. 振動(dòng)與沖擊, 2017, 36(1): 82-87.
ZHAN Jie-zi,YU Ling. An effective independenceimproved modal strain energy method for optimal sensor placement. Journal of Vibration and Shock, 2017, 36(1): 82-87.
[59]吳子燕, 代鳳娟, 宋靜,等. 損傷檢測(cè)中的傳感器優(yōu)化布置方法研究[J]. 西北工業(yè)大學(xué)學(xué)報(bào), 2007, 25(4): 503-507.
Wu Ziyan, Dai Fengjuan, Song Jing, et al. A more efficient optimal sensor placement method for structure damage detection [J]. Journal of Northwestern Polytechnical University, 2007, 25(4): 503-507.
[60]Chen B, Huang Z, Zheng D, et al. A hybrid method of optimal sensor placement for dynamic response monitoring of hydro-structures[J]. International Journal of Distributed Sensor Networks, 2017, 13(5): 155014771770772.
[61]孫紅春, 胥勇. 砂輪劃片機(jī)模態(tài)測(cè)試中的傳感器測(cè)點(diǎn)優(yōu)化研究[J]. 振動(dòng)與沖擊, 2017, 36(5): 187-191.
SUN Hongchun, XU Yong. Optimal placement of sensors for modal testing of dicing saws. Journal of Vibration and Shock, 2017, 36(5): 187-191.
[62]Cruz A, Vélez W, Thomson P. Optimal sensor placement for modal identification of structures using genetic algorithms-a case study: the olympic stadium in cali, colombia[J]. Annals of Operations Research, 2010, 181(1): 769-781.
[63]Liu W, Gao W C, Sun Y, et al. Optimal sensor placement for spatial lattice structure based on genetic algorithms[J]. Journal of Sound and Vibration, 2008, 317(1-2): 175-189.
[64]Yao L, Sethares W A, Kammer D C. Sensor placement for on-orbit modal identification via a genetic algorithm[J]. AIAA Journal, 2012, 31(10): 1922-1928.
[65]Jung B K, Cho J R, Jeong W B. Sensor placement optimization for structural modal identification of flexible structures using genetic algorithm[J]. Journal of Mechanical Science and Technology, 2015, 29(7): 2775-2783.
[66]Mahdavi S H, Razak H A. Optimal sensor placement for time-domain identification using a wavelet-based genetic algorithm[J]. Smart Materials and Structures, 2016, 25(6): 065006.
[67]Downey A, Hu C, Laflamme S. Optimal sensor placement within a hybrid dense sensor network using an adaptive genetic algorithm with learning gene pool[J]. Structural Health Monitoring, 2017(10): 147592171770253.
[68]Seyedpoor S M. A two stage method for structural damage detection using a modal strain energy based index and particle swarm optimization[J]. Advances in Swarm Intelligence, 2012, 47(1):1-8.
[69]趙建華, 張陵, 孫清. 利用粒子群算法的傳感器優(yōu)化布置及結(jié)構(gòu)損傷識(shí)別研究[J]. 西安交通大學(xué)學(xué)報(bào), 2015(1):79-85.
Zhao Jianhua, Zhang Ling, Sun Qing. Optimal placement of sensors for structural damage identification using improved particle swarm optimization [J]. Journal of Xi'an Jiaotong University, 2015(1):79-85.
[70]Yi T H, Li H N, Zhang X D. Health monitoring sensor placement optimization for canton tower using immune monkey algorithm[J]. Structural Control and Health Monitoring, 2015, 22(1): 123-138.
[71]Yi T H, Li H N, Wang C. Multiaxial sensor placement optimization in structural health monitoring using distributed wolf algorithm[J]. Structural Control and Health Monitoring, 2016, 23(4): 719-734.
[72]Li S, Zhang H, Liu S, et al. Optimal sensor placement using FRFs-based clustering method[J]. Journal of Sound and Vibration, 2016, 385: 69-80.
[73]Yoganathan D, Kondepudi S, Kalluri B, et al. Optimal sensor placement strategy for office buildings using clustering algorithms[J]. Energy and Buildings, 2018, 158: 1206-1225.
[74]張恒, 李世其, 劉世平, 等. 一種聚類優(yōu)化的傳感器布置方法研究[J]. 振動(dòng)與沖擊, 2017, 36(14): 61-65.
Zhang Heng Li Shi-qi Liu Shi-ping et, al. An optimal sensor placement by using clustering method. Journal of Vibration and Shock, 2017, 36(14): 61-65.
[75]Sun H, Büyük?ztürk O. Optimal sensor placement in structural health monitoring using discrete optimization[J]. Smart Materials and Structures, 2015, 24(12): 125034.
[76]Lu W, Wen R, Teng J, et al. Data correlation analysis for optimal sensor placement using a bond energy algorithm[J]. Measurement, 2016, 91: 509-518.
[77]Lian J J, He L J, Ma B, et al. Optimal sensor placement for large structures using the nearest neighbour index and a hybrid swarm intelligence algorithm[J]. Smart Materials and Structures, 2013, 22(9): 692-700.
[78]Li B, Kiureghian A D. Robust Optimal Sensor Placement for Operational Modal Analysis Based on Maximum Expected Utility[J]. Mechanical Systems & Signal Processing, 2016, 75: 155-175.
[79]Molyboha A, Zabarankin M. Stochastic optimization of sensor placement for diver detection[J]. Operations research, 2012, 60(2): 292-312.
[80]Guratzsch R F, Mahadevan S. Structural health monitoring sensor placement optimization under uncertainty[J]. AIAA journal, 2010, 48(7): 1281-1289.
[81]Castro-Triguero R, Saavedra Flores E I, DiazDelaO F A, et al. Optimal sensor placement in timber structures by means of a multi-scale approach with material uncertainty[J]. Structural Control and Health Monitoring, 2014, 21(12): 1437-1452.
[82]Castro-Triguero R, Murugan S, Gallego R, et al. Robustness of optimal sensor placement under parametric uncertainty[J]. Mechanical Systems and Signal Processing, 2013, 41(1-2): 268-287.
[83]Vincenzi L, Simonini L. Influence of model errors in optimal sensor placement[J]. Journal of Sound and Vibration, 2017, 389: 119-133.
[84]Kim T, Youn B D, Oh H. Development of a stochastic effective independence (SEfI) method for optimal sensor placement under uncertainty[J]. Mechanical Systems and Signal Processing, 2018, 111: 615-627.
[85]Papadimitriou C, Lombaert G. The effect of prediction error correlation on optimal sensor placement in structural dynamics[J]. Mechanical Systems and Signal Processing, 2012, 28: 105-127.
[86]Qiu Z, Elishakoff I. Antioptimization of structures with large uncertain-but-non-random parameters via interval analysis[J]. Computer methods in applied mechanics and engineering, 1998, 152(3-4): 361-372.
[87]Qiu Z, Wang X. Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach[J]. International Journal of Solids and structures, 2003, 40(20): 5423-5439.
[88]王磊, 王曉軍, 邱志平. 不確定性結(jié)構(gòu)分析與優(yōu)化設(shè)計(jì)專題? 編者按[J]. 中國科學(xué): 物理學(xué) 力學(xué) 天文學(xué), 2018 (1): 2.
Wang Lei, Wang Xiaojun, Qiu Zhiping. Special topic: Uncertainty-based structural analysis and design optimization [J]. SCIENTIA SINICA Physica,Mechanica & Astronomica, 2018 (1): 2.
[89]Yang C, Lu Z X, Yang Z Y. Robust optimal sensor placement for uncertain structures with interval parameters [J]. IEEE Sensors Journal, 2018, 18(5): 2031-2041.
[90]Yang C, Lu Z X. An interval effective independence method for optimal sensor placement based on non-probabilistic approach [J]. SCIENCE CHINA Technological Sciences, 2017, 60(2): 186-198.
[91]Stephan C. Sensor placement for modal identification[J]. Mechanical Systems and Signal Processing, 2012, 27(1):461-470.
[92]Friswell M I, Castrotriguero R. Clustering of sensor locations using the effective independence method[J]. AIAA Journal, 2015, 53(5): 1-3.
[93]Li D S, Li H N, Fritzen C P. Comments on “Clustering of sensor locations using the effective independence method”[J]. AIAA Journal, 2016, 54(6): 1-2.
[94]何龍軍, 練繼建, 馬斌,等. 基于距離系數(shù)-有效獨(dú)立法的大型空間結(jié)構(gòu)傳感器優(yōu)化布置[J]. 振動(dòng)與沖擊, 2013, 32(16): 13-18.
He Longjun, Lian Jijian, Ma Bin, et al. Optimal sensor placement for large space structures based on distance coefficient-effective independence method [J]. Journal of Vibration and Shock, 2013, 32(16): 13-18.
[95]張建偉, 劉軒然, 趙瑜,等. 基于有效獨(dú)立-總位移法的水工結(jié)構(gòu)振測(cè)傳感器優(yōu)化布置[J]. 振動(dòng)與沖擊, 2016, 35(8): 148-153.
Zhang Jianwei, Liu Xuanran, Zhao Yu, et al. Optimal sensor placement for hydraulic structures based on effective independence-total displacement method [J]. Journal of Vibration and Shock, 2016, 35(8): 148-153.
[96]Bonisoli E, Delprete C, Rosso C. Proposal of a modal-geometrical-based master nodes selection criterion in modal analysis[J]. Mechanical Systems and Signal Processing, 2009, 23: 606-620.
[97]Vincenzi L, Simonini L. Influence of model errors in optimal sensor placement[J]. Journal of Sound and Vibration, 2017, 389: 119-133.
[98]蔡智恒,周金柱,唐寶富,等. 面向結(jié)構(gòu)形變重構(gòu)的應(yīng)變傳感器優(yōu)化布局[J]. 振動(dòng)與沖擊, 2019, 38(14): 83-88.
CAI Zhiheng,ZHOU Jinzhu,TANG Baofu,et al. Optimal strain sensor placement for structural deformation reconstruction. Journal of Vibration and Shock, 2019, 38(14): 83-88.
[99]Yang C, Zhang X P, Huang X Q, et al. Optimal sensor placement for deployable antenna module health monitoring in ssps using genetic algorithm[J]. Acta Astronautica, 2017, 140: 213-224.
[100]Yang C, Liang K, Zhang X P, Geng X Y. Sensor placement algorithm for structural health monitoring with redundancy elimination model based on sub-clustering strategy [J]. Mechanical Systems and Signal Processing, 2019, 124: 369-387.
[101]Yang C. Sensor placement for structural health monitoring using hybrid optimization algorithm based on sensor distribution index and FE grids [J]. Structural Control and Health Monitoring, 2018, e2160.
[102]Yang C, Zheng W Z, Zhang X P. Optimal sensor placement for spatial lattice structure based on three-dimensional redundancy elimination model [J]. Applied Mathematical Modelling, 2019, 66: 576-591.
[103]Santi L M, Sowers T S, Aguila R B. Optimal sensor selection for health monitoring systems[C]. NASA/TM-2005-213955, AIAA-2005-4485, 2005.
[104]Yi T H, Li H N. Methodology developments in sensor placement for health monitoring of civil infrastructures[J]. International Journal of Distributed Sensor Networks, 2012: 601-617.
[105]伊廷華, 李宏男, 顧明. 結(jié)構(gòu)健康監(jiān)測(cè)中基于多重優(yōu)化策略的傳感器布置方法[J]. 建筑結(jié)構(gòu)學(xué)報(bào), 2011, 32(12): 217-223.
Yi Tinghua, Li Hongnan, Gu Ming. Multiple optimization strategies based sensor placement method for structural health monitoring [J]. Journal of Building Structures, 2011, 32(12): 217-223.
[106]Zhang J, Maes K, Roeck G D, et al. Optimal sensor placement for multi-setup modal analysis of structures[J]. Journal of Sound and Vibration, 2017, 401: 214-232.
[107]Yang W, Sun L, Yu G. Optimal Sensor placement methodology for uncertainty reduction in the assessment of structural condition[J]. Structural Control and Health Monitoring, 2017, 24(6): e1927.
[108]Yuen K, Kuok S. Efficient Bayesian Sensor Placement Algorithm for Structural Identification: A General Approach for Multi-Type Sensory Systems[J]. Earthquake Engineering & Structural Dynamics, 2015, 44(5): 757-774.
[109]Li B B, Li D S, Zhao X F, et al. Optimal sensor placement in health monitoring of suspension bridge[J]. Science China Technological Sciences, 2012, 55(7): 2039-2047.
[110]Liu K, Yan R J, Soares C G. Optimal sensor placement and assessment for modal identification[J]. Ocean Engineering, 2018, 165: 209-220.
[111]王娟. 結(jié)構(gòu)時(shí)域辨識(shí)方法及傳感器優(yōu)化布置問題研究[D]. 北京交通大學(xué), 2013.
Wang Juan. Studies on structural system identification and optimal sensor placement methods in time domain. [PhD Thesis]. Beijing Jiaotong Technology, 2013.
[112]Salehpour-Oskouei F, Pourgol-Mohammad M. Sensor placement determination in system health monitoring process based on dual information risk and uncertainty criteria[J]. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2018, 232(1): 65-81.
[113]Zhang C D, Xu Y L. Optimal multi-type sensor placement for response and excitation reconstruction[J]. Journal of Sound and Vibration, 2016, 360: 112-128.
[114]Zhang J, Maes K, De Roeck G, et al. Optimal sensor placement for multi-setup modal analysis of structures[J]. Journal of Sound and Vibration, 2017, 401: 214-232.
[115]Zhang X H, Xu Y L, Zhu S, et al. Dual-type sensor placement for multi-scale response reconstruction[J]. Mechatronics, 2014, 24(4): 376-384.
[116]Lin J F, Xu Y L, Law S S. Structural damage detection-oriented multi-type sensor placement with multi-objective optimization[J]. Journal of Sound and Vibration, 2018, 422: 568-589.
[117]Soman R, Kyriakides M, Onoufriou T, et al. Numerical evaluation of multi-metric data fusion based structural health monitoring of long span bridge structures[J]. Structure and Infrastructure Engineering, 2018, 14(6): 673-684.
[118]Domingo-Perez F, Lazaro-Galilea J L, Wieser A, et al. Sensor placement determination for range-difference positioning using evolutionary multi-objective optimization[J]. Expert Systems with Applications, 2016, 47: 95-105.
[119]Xu Y L, Zhang X H, Zhu S, et al. Multi-type sensor placement and response reconstruction for structural health monitoring of long-span suspension bridges[J]. Science bulletin, 2016, 61(4): 313-329.
[120]曾超, 湯寶平, 肖鑫, 等. 低功耗機(jī)械振動(dòng)無線傳感器網(wǎng)絡(luò)節(jié)點(diǎn)結(jié)構(gòu)設(shè)計(jì)[J]. 振動(dòng)與沖擊, 2017, 36(14): 33-37.
ZENG Chao,TANG Bao-ping,XIAO Xin,et al. Low power architecture design method of mechanical vibration wireless sensor networks node. Journal of Vibration and Shock, 2017, 36(14): 33-37.
{{custom_fnGroup.title_cn}}
腳注
{{custom_fn.content}}相關(guān)知識(shí)
健康監(jiān)測(cè)傳感器的研究進(jìn)展
可穿戴式健康監(jiān)測(cè)系統(tǒng)研究與展望
研究進(jìn)展
移動(dòng)健康醫(yī)療器械的介紹與展望
華中大、南洋理工發(fā)Nature:無線超聲傳感器用于顱內(nèi)生理信號(hào)監(jiān)測(cè)
健康發(fā)展與政策研究
傳染病監(jiān)測(cè)預(yù)警平臺(tái)實(shí)現(xiàn)從被動(dòng)監(jiān)測(cè)向主動(dòng)監(jiān)測(cè)發(fā)展
柔軟靈活的無線傳感器可監(jiān)測(cè)嬰兒和產(chǎn)婦健康
大數(shù)據(jù)時(shí)代下慢性病防控新模式的研究進(jìn)展
用于健康與健身應(yīng)用的傳感器技術(shù)
網(wǎng)址: 結(jié)構(gòu)健康監(jiān)測(cè)的傳感器優(yōu)化布置研究進(jìn)展與展望 http://m.u1s5d6.cn/newsview135701.html
推薦資訊
- 1發(fā)朋友圈對(duì)老公徹底失望的心情 12775
- 2BMI體重指數(shù)計(jì)算公式是什么 11235
- 3補(bǔ)腎吃什么 補(bǔ)腎最佳食物推薦 11199
- 4性生活姿勢(shì)有哪些 盤點(diǎn)夫妻性 10425
- 5BMI正常值范圍一般是多少? 10137
- 6在線基礎(chǔ)代謝率(BMR)計(jì)算 9652
- 7一邊做飯一邊躁狂怎么辦 9138
- 8從出汗看健康 出汗透露你的健 9063
- 9早上怎么喝水最健康? 8613
- 10五大原因危害女性健康 如何保 7826