抗生素菌渣處理技術(shù)研究進展
摘要:抗生素菌渣是制藥企業(yè)在生產(chǎn)抗生素類藥物時,由微生物發(fā)酵產(chǎn)生的固體廢棄物.作為國家規(guī)定的危險廢物,其產(chǎn)量大、含水率高、含氮、硫量高、殘留抗生素的特點,使其具有巨大的環(huán)境危害性.抗生素菌渣的科學、無害處理是醫(yī)藥固廢領域的熱點難題.本文系統(tǒng)闡述了抗生素菌渣的類型、性質(zhì)和危害,詳細綜述了目前主流的各類熱化學處理技術(shù)和非熱化學處理技術(shù),重點對包括焚燒技術(shù)、水熱技術(shù)和熱解氣化技術(shù)等在內(nèi)的熱化學處理技術(shù)進行了系統(tǒng)歸納,匯總分析其技術(shù)特點、環(huán)境影響、應用瓶頸及研究進展.同時,對抗生素菌渣處理的未來發(fā)展提出若干建議和展望,提出烘焙技術(shù)消除其生物危險性的處理理念,建立健全相關(guān)安全標準與法律規(guī)范,以更好地降低抗生素菌渣潛在的環(huán)境風險并實現(xiàn)資源利用,解決抗生素類藥物生產(chǎn)工藝的后顧之憂,促進我國制藥行業(yè)持續(xù)健康發(fā)展.
Abstract:Antibiotic mycelial fermentation residue (AMFR) is a solid waste generated during the fermentation for the production of antibiotic drugs. As a state-specified hazardous waste, it causes huge environmental pollution due to the large yields, high contaminants, and the inevitable residual of antibiotics. The clean treatments of AMFR are facing difficulties. In this paper, the types, characteristics and perniciousness of AMFR are reviewed, and the feasible thermochemical technologies and non-thermochemical technologies are also introduced. Particularly, the thermochemical technologies are systematic summarized, including incineration, hydrothermal treatment and pyrolysis /gasification. The general evaluations, environmental impact, applications and research progress of thermochemical technologies are comparatively analyzed. At the same time, it is hoped to provide some useful information for treating AMFR. For example, torrefaction, as a pretreatment, can eliminate the biological hazards and provide benefits for downstream thermal treatments. With this review, it shed a light on AMDR treatment during production process of antibiotic drugs, and promoted the sustainable and sound development of pharmaceutical industry of our country.
[1]李再興, 田寶闊, 左劍惡, 等. 抗生素菌渣處理處置技術(shù)進展[J]. 環(huán)境工程, 2012, 30(2):72-75.LI Z X, TIAN B K, ZUO J E, et al. Progress in treatment and disposal technology of antibiotic bacterial residues[J]. Environmental Engineering, 2012, 30(2):72-75(in Chinese).
[2]袁梓涵, 尹杰, 尹艷山, 等. 造紙污泥熱化學處理的研究進展[J]. 中國造紙學報, 2019, 34(2):60-65.YUAN Z H, YIN J, YIN Y S, et al. Research progress in thermochemical conversion of paper sludge[J]. Transaction of China Pulp and Paper, 2019, 34(2):60-65(in Chinese).
[3]安淼, 袁國安, 夏旻. 廢棄物熱化學處理方法的多角度對比分析[J]. 環(huán)境與可持續(xù)發(fā)展, 2018, 43(4):151-154.AN M, YUAN G A, XIA M. Comparison of thermochemical technologies for waste treatment[J]. Environment and Sustainable Development, 2018, 43(4):151-154(in Chinese).
[4]蘇毅, 朱惠春, 張金亮, 等. 城市垃圾熱化學轉(zhuǎn)化處理技術(shù)進展與應用[J]. 工業(yè)鍋爐, 2015(1):7-14. SU Y, ZHU H C, ZHANG J L, et al. Progress and application of thermochemical treatment technology for municiple solid waste[J]. Industrial Boilers, 2015(1):7-14(in Chinese).
[5]BEN Y J, FU C X, HU M, et al. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment:A review[J]. Environmental Research, 2019, 169:483-493. [6]貢麗鵬, 郭斌, 任愛玲, 等. 抗生素菌渣理化特性[J]. 河北科技大學學報, 2012, 33(2):190-196.GONG L P, GUO B, REN A L, et al. Physical and chemical properties of antibiotics bacterial residue[J]. Journal of University of Science and Technology, 2012, 33(2):190-196(in Chinese).
[7]李海源.水稻秸稈營養(yǎng)穴盤微波熱風聯(lián)合干燥工藝研究[D]. 大慶:黑龍江八一農(nóng)墾大學, 2019. LI H Y. Study on microwave hot air combined drying technology of rice straw nutrition plug plate[D]. Daqing:Heilongjiang Bayi Agricultural University, 2019(in Chinese). [8]侯善策.堆肥物料含水率在線檢測系統(tǒng)的優(yōu)化及試驗驗證[D]. 大慶:黑龍江八一農(nóng)墾大學, 2018. HOU S C. Optimization and experimental verification of on-line detection system for moisture content of compost materials[D]. Daqing:Heilongjiang Bayi Agricultural University, 2018(in Chinese). [9]田純焱.畜禽糞便好氧堆肥處理及高效復合肥肥效的研究[D]. 武漢:華中農(nóng)業(yè)大學, 2011. TIAN C Y. Study on aerobic composting of livestock and poultry manure and fertilizer efficiency of high-efficiency compound fertilizer[D]. Wuhan:Huazhong Agricultural University, 2011(in Chinese). [10]鄒書娟, 王一迪, 張均雅, 等. 抗生素菌渣理化性質(zhì)分析[J]. 環(huán)境科學與技術(shù), 2018, 41(S1):47-52.ZOU S J, WANG Y D, ZHANG J Y, et al. Analysis of physical and chemical properties of antibiotic bacterial residue[J]. Environmental Science & Technology, 2018, 41(S1):47-52(in Chinese).
[11]馮麗慧, 邢奕, 楊鵬宇. 抗生素菌渣熱解及氣態(tài)污染物排放特性的研究[J]. 安全與環(huán)境工程, 2018, 25(4):89-96.FENG L G, XING Y, YANG P Y. Characteristics of pyrolysis and gaseous pollutant emissions of antibiotic bacterial residue[J]. Safety and Environmental Engineering, 2018, 25(4):89-96(in Chinese).
[12]劉朝霞, 牛文娟, 楚合營, 等. 秸稈熱解工藝優(yōu)化與生物炭理化特性分析[J]. 農(nóng)業(yè)工程學報, 2018, 34(5):196-203.LIU C X, NIU W J, CHU H Y, et al. Process optimization for straws pyrolysis and analysis of biochar physiochemical properties[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(5):196-203(in Chinese).
[13]蔡鵬瑤, 黃光群, 韓魯佳. 不同畜禽糞便的熱解特性及反應動力學[J]. 中國農(nóng)業(yè)大學學報, 2012, 17(5):112-117.CAI P Y, HUANG G Q, HAN L J. Characteristics and kinetics of pyrolysis for animal manures[J]. Journal of China Agricultural University, 2012, 17(5):112-117(in Chinese).
[14]詹昊, 林均衡, 黃艷琴, 等. 抗生素菌渣熱解N官能團變化特征及其與NOx前驅(qū)物關(guān)系研究[J]. 燃料化學學報, 2017, 45(10):1219-1229.ZHAN H, LIN J H, HUANG Y Q, et al. Evolution of nitrogen functionalities and their relation to NOx precursors during pyrolysis of antibiotic mycelia wastes[J].Journal of Fuel Chemistry and Technology, 2017, 45(10):1219-1229(in Chinese).
[15]陳黎, 孔祥生, 劉秋新, 等. 抗生素菌渣生物炭的制備及特性[J]. 環(huán)境科學與技術(shù), 2019, 42(6):128-133.CHEN L, KONG X S, LIU Q X, et al. Preparation and characteristics of biochars produced from antibiotic bacterial residues[J]. Environmental Science & Technology, 2019, 42(6):128-133(in Chinese).
[16]焦永剛, 馬長捷, 李敏霞. 熱解法處理抗生素發(fā)酵殘渣的研究初探[J]. 工業(yè)安全與環(huán)保, 2011, 37(5):36-37.JIAO Y G, MA C J, LI M X. The study of antibiotic fermentation residue treatment by pyrolysis[J]. Industrial Safety and Environmental Protection, 2011, 37(5):36-37(in Chinese).
[17]平然, 任愛玲, 田書磊, 等. 兩種抗生素菌渣經(jīng)SEA-CBS技術(shù)處理后的肥料特性[J]. 環(huán)境科學研究, 2019, 32(11):1945-1951.PING R, REN A L, TIAN S L, et al. Fertilizer characteristics of two kinds of antibiotic bacterial residues treated by SEA-CBS technology[J]. Research of Environment Sciences, 2019, 32(11):1945-1951(in Chinese).
[18]陳黎, 孔祥生, 劉秋新, 等. 妥布霉素菌渣的理化性質(zhì)及危害[J]. 環(huán)境科學與技術(shù), 2019, 42(9):30-35.CHEN L, KONG X S, LIU Q X, et al. Physical and chemical properties and harm of tobramycin bacterial residues[J]. Environmental Science & Technology, 2019, 42(9):30-35(in Chinese).
[19]陳小娟.重金屬危險廢物的藥劑穩(wěn)定化及其機理研究[D]. 杭州:浙江工業(yè)大學, 2004. CHEN X J. Study on stabilization and mechanism of heavy metal hazardous waste[D]. Hangzhou:Zhejiang University of Technology, 2004(in Chinese). [20]曹盼, 宋思奇, 劉惠玲. 氨基糖苷類抗生素菌渣殘留檢測方法與資源化研究進展[J]. 環(huán)境保護科學, 2018, 44(4):121-126.CAO P, SONG S Q, LIU H L. Research progress in residue detection methods and resource recovery of aminoglycoside antibiotic residue[J]. Environmental Protection Science, 2018, 44(4):121-126(in Chinese).
[21]HERNANDO M D, MEZCUA M, FERNáNDEZ-ALBA A R, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments[J]. Talanta, 2006, 69(2):334-342. [22]WATKINSON A J, MURBY E J, KOLPIN D W, et al. The occurrence of antibiotics in an urban watershed:From wastewater to drinking water[J]. Science of the Total Environment, 2009, 407(8):2711-2723. [23]史曉, 卜慶偉, 吳東奎, 等. 地表水中10種抗生素SPE-HPLC-MS/MS檢測方法的建立[J]. 環(huán)境化學, 2020, 39(4):1075-1083.SHI X, BU Q W, WU D K, et al. Simultaneous determination of 10 antibiotic residues in surface water by SPE-HPLC-MS/MS[J]. Environmental Chemistry, 2020, 39(4):1075-1083(in Chinese).
[24]LUO Y, XU L, RYSZ M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China[J]. Environmental Science & Technology, 2011, 45(5):1827-1833. [25]宋淑敏, 張翔宇, 周佳虹, 等. 超高效液相色譜串聯(lián)質(zhì)譜法同時測定城市污水處理廠污泥中12種抗生素[J]. 環(huán)境化學, 2017, 36(09):1923-1931.SONG S M, ZHANG X Y, ZHOU J H, et al. Simultaneous determination of 12 antibiotics in sewage sludge by ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry[J]. Environmental Chemistry, 2017, 36(9):1923-1931(in Chinese).
[26]CHEN W, GENG Y, HONG J L, et al. Life cycle assessment of antibiotic mycelial residues management in China[J]. Renewable and Sustainable Energy Reviews, 2017, 79:830-838. [27]SHAO J A, YAN R, CHEN H P, et al. Pyrolysis characteristics and kinetics of sewage sludge by thermogravimetry fourier transform infrared analysis[J]. Energy & Fuels, 2008, 22(1):38-45. [28]JIANG X G, FENG Y H, LV G J, et al. Bioferment residue:TG-FTIR study and cocombustion in a MSW incineration plant[J]. Environmental Science & Technology, 2012, 46(24):13539-13544. [29]ZHANG G Y, LIU H, GE Y X, et al. Gaseous emission and ash characteristics from combustion of high ash content antibiotic mycelial residue in fluidized bed and the impact of additional water vapor[J]. Fuel, 2017, 202:66-77. [30]洪晨, 楊強, 王志強, 等. 抗生素菌渣與煤混合燃燒特性及其動力學分析[J]. 化工學報, 2017, 68(1):360-368.HONG C, YANG Q, WANG Z Q, et al. Co-combustion characteristics and kinetics analysis of antibiotic bacterial residue and coal[J]. CIESC Journal, 2017, 68(1):360-368(in Chinese).
[31]CHAKRABORTY M, MIAO C, MCDONALD A, et al. Concomitant extraction of bio-oil and value added polysaccharides from Chlorella sorokiniana using a unique sequential hydrothermal extraction technology[J]. Fuel, 2012, 95:63-70. [32]SONG W H, WANG S Z, GUO Y, et al. Bio-oil production from hydrothermal liquefaction of waste Cyanophyta biomass:Influence of process variables and their interactions on the product distributions[J]. International Journal of Hydrogen Energy, 2017, 42(31):20361-20374. [33]WANG L P, LI A M, CHANG Y Z. Relationship between enhanced dewaterability and structural properties of hydrothermal sludge after hydrothermal treatment of excess sludge[J]. Water Research, 2017, 112:72-82. [34]ZHUANG X Z, HUANG Y Q, SONG Y P, et al. The transformation pathways of nitrogen in sewage sludge during hydrothermal treatment[J]. Bioresource Technology, 2017, 245:463-470. [35]TOOR S S, ROSENDAHL L, RUDOLF A. Hydrothermal liquefaction of biomass:A review of subcritical water technologies[J]. Energy, 2011, 36(5):2328-2342. [36]MENG D W, JIANG Z L, KUNIO Y, et al. The effect of operation parameters on the hydrothermal drying treatment[J]. Renewable Energy, 2012, 42:90-94. [37]NEYENS E, BAEYENS J. A review of thermal sludge pre-treatment processes to improve dewaterability[J]. Journal of Hazardous Materials, 2003, 98(1):51-67. [38]ZHUANG X Z, ZHAN H, SONG Y P, et al. Reutilization potential of antibiotic wastes via hydrothermal liquefaction (HTL):Bio-oil and aqueous phase characteristics[J]. Journal of the Energy Institute, 2019, 92(5):1537-1547. [39]ZHANG G Y, MA D C, PENG C N, et al. Process characteristics of hydrothermal treatment of antibiotic residue for solid biofuel[J]. Chemical Engineering Journal, 2014, 252:230-238. [40]WANG M M, LIU H L, CHENG X M, et al. Hydrothermal treatment of lincomycin mycelial residues:Antibiotic resistance genes reduction and heavy metals immobilization[J]. Bioresource Technology, 2019, 271:143-149. [41]NEYENS E, BAEYENS J, DEWIL R, et al. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering[J]. Journal of Hazardous Materials, 2004, 106(2):83-92. [42]LI C X, ZHANG G Y, ZHANG Z K, et al. Hydrothermal pretreatment for biogas production from anaerobic digestion of antibiotic mycelial residue[J]. Chemical Engineering Journal, 2015, 279:530-537. [43]尤占平, 郝長生, 焦永剛, 等. 兩種抗生素菌渣熱解及燃燒特性對比研究[J]. 工業(yè)安全與環(huán)保, 2016, 42(5):41-43.YOU Z P, HAO C S, JIAO Y G, et al. Pyrolysis and combustion characteristics comparison studies of two kinds of antibiotic residues[J]. Industrial Safety and Environmental Protection, 2016, 42(5):41-43(in Chinese).
[44]洪晨, 王志強, 邢奕, 等. 熱解溫度對土霉素菌渣焦炭化學性質(zhì)的影響[J]. 中國環(huán)境科學, 2017, 37(3):1058-1065.HONG C, WANG Z Q, XING Y, et al. Effect of temperature on chemical properties of chars in terramycin ferment residue paralysis process[J].China Environmental Science, 2017, 37(3):1058-1065(in Chinese).
[45]LIU Y C, ZHU X D, WEI X C, et al. CO2 activation promotes available carbonate and phosphorus of antibiotic mycelial fermentation residue-derived biochar support for increased lead immobilization[J]. Chemical Engineering Journal, 2018, 334:1101-1107. [46]GUO J L, ZHENG L, LI F Z, et al. Thermal decomposition of antibiotic mycelial fermentation residues in Ar, air, and CO2-N2 atmospheres by TG-FTIR method[J]. Journal of Thermal Analysis and Calorimetry, 2019, 137(6):2053-2060. [47]MA D C, ZHANG G Y, AREEPRASERT C, et al. Characterization of NO emission in combustion of hydrothermally treated antibiotic mycelial residue[J]. Chemical Engineering Journal, 2016, 284:708-715. [48]ZHU X D, YANG S J, WANG L, et al. Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology[J]. Environmental Pollution, 2016, 211:20-27. [49]CHEN H F, WANG Y, XU G W, et al. Fuel-N evolution during the pyrolysis of industrial biomass wastes with high nitrogen content[J]. Energies, 2012, 5(12):5418-5438. [50]DU Y Y, JIANG X G, LV G J, et al. Thermal behavior and kinetics of bio-ferment residue/coal blends during co-pyrolysis[J]. Energy Conversion and Management, 2014, 88:459-463. [51]常加富, 張屹, 霍燕, 等. 抗生素菌渣氣化燃燒試驗研究[J]. 化工管理, 2019(28):98-99. CHANG J F, ZHANG Q, HUO Y, et al. Experimental study on pyrolysis fasification and combustion of antibiotic mycelial dregs[J]. Chemical Enterprise Management, 2019(28):98-99(in Chinese).
[52]辛善志, 黃芳, 劉曉燁, 等. 烘焙中藥渣的熱解與燃燒特性及其動力學分析[J]. 化工學報, 2019, 70(8):3142-3150.XIN S Z, HUANG F, LIU X Y, et al. Pyrolysis and combustion characteristics and kinetics of torrefied traditional Chinese medicine waste[J]. CIESC Journal, 2019, 70(8):3142-3150(in Chinese).
[53]張雨, 徐佳佳, 馬中青, 等. 烘焙預處理對方竹熱解產(chǎn)物特性的影響[J]. 浙江農(nóng)林大學學報, 2019, 36(5):981-989.ZHANG Y, XU J J, MA Z Q, et al. Pretreatment on characteristics of pyrolysis products for small diameter sympodial bamboo with torrefaction[J]. Journal of Zhejiang A & F University, 2019, 36(5):981-989(in Chinese).
[54]KIM H Y, YU S H, LEE M J, et al. Radiolysis of selected antibiotics and their toxic effects on various aquatic organisms[J]. Radiation Physics and Chemistry, 2009, 78(4):267-272. [55]CSAY T, RACZ G, TAKACS E, et al. Radiation induced degradation of pharmaceutical residues in water:Chloramphenicol[J]. Radiation Physics and Chemistry, 2012, 81(9):1489-1494. [56]SANCHEZ-POLO M, LOPEZ-PENALVER J, PRADOS-JOYA G, et al. Gamma irradiation of pharmaceutical compounds, nitroimidazoles, as a new alternative for water treatment[J]. Water Research, 2009, 43(16):4028-4036. [57]謝芳, 哈益明, 王鋒, 等. γ射線輻照水溶液中氯霉素的降解研究[J]. 輻射研究與輻射工藝學報, 2008(3):151-156. XIE F, HA Y M, WANG F, et al. Studies on γ-irradiation-induced-degradation of chloramphenicol in aqueous solution[J]. Journal of Radiation Research and Radiation Processing, 2008(3):151-156(in Chinese).
[58]鄧良斌, 顏武華. 一種基于無害化處理的抗生素菌渣固體發(fā)酵裝置的開發(fā)[J]. 福建輕紡, 2019(5):26-30. DENG L B, YAN W H. Development of a solid fermentation device for antibiotic bacteria residue based on harmless treatment[J]. The Light & Textile Industries of Fujian, 2019(5):26-30(in Chinese).
[59]李路平, 李俊玲, 杜黎君. 制藥行業(yè)下腳料生產(chǎn)有機肥的質(zhì)量評價[J]. 河南科技學院學報, 2009, 37(3):29-31.LI L P, LI J L, DU L J. Quality evaluation and prospect analysis of production organic fertilizer by spent material in pharmaceutical industry in Xinjiang[J]. Journal of Henan Institute of Science and Technology, 2009, 37(3):29-31(in Chinese).
[60]鄭佳倫, 劉超翔, 劉琳, 等.畜禽養(yǎng)殖業(yè)主要廢棄物處理工藝消除抗生素研究進展[J]. 環(huán)境化學, 2017, 36(1):37-47.DENG J L, LIU C X, LIU L, et al. Removal of antibiotics in waste and wastewater treatment facilities of animal breeding industry:A review[J]. Environmental Chemistry, 2017, 36(1):37-47(in Chinese).
[61]蘇建文, 王俊超, 許尚營, 等. 紅霉素菌渣厭氧消化實驗研究[J]. 中國沼氣, 2013, 31(5):25-28.SU J W, WANG J C, XU S Y, et al. Anaerobic digestion of bacterial residues from erythromycin production[J]. China Biogas, 2013, 31(5):25-28(in Chinese).
[62]孫效新, 黃棟, 李建民, 等. 抗生素廢菌渣液厭氧生物處理試驗研究[J]. 中國沼氣, 1990(3):11-14. SUN X X, HUANG D, LI J M, et al. Study on the treatment of sewage of antibiotic mycelium by anaerobic digestion[J]. China Biogas, 1990(3):11-14(in Chinese).
[63]李士蘭, 何辰慶. 以卡娜霉素制藥廢渣和酒槽為原料制取沼氣發(fā)酵條件的研究[J]. 微生物學雜志, 1988(2):11-15. LI S L, HE C Q.A study of biogas formation of distillers's grains and residue of kanamycin fermentation[J]. Journal of Microbiology, 1988(2):11-15(in Chinese).
[64]何品晶, 管冬興, 吳鐸, 等. 氨氮和林可霉素對有機物厭氧消化的抑制效應[J]. 化工學報, 2011, 62(5):1389-1394.HE P J, GUAN D X, WU D, et al. Inhibitory effect of ammonia and lincomycin on anaerobic digestion[J]. CIESC Journal, 2011, 62(5):1389-1394(in Chinese).
[65]徐頌, 吳鐸, 呂凡, 等. 含固率和接種比對林可霉素菌渣厭氧消化的影響[J]. 中國環(huán)境科學, 2010, 30(3):362-368.XU S, WU D, LV F, et al. Influence of total solid content and ratio of inoculum to substrate on anaerobic digestion of lincomycin biowaste[J]. China Environmental Science, 2010, 30(3):362-368(in Chinese).
[66]李維華, 趙君, 車暢. 四環(huán)素類抗生素對堆肥腐熟度的影響[J]. 黑龍江醫(yī)藥, 2013, 26(2):244-246.LI W H, ZHAO J, CHE C. Influence of tetracycline for composting[J]. Heilongjiang Medicine Journal, 2013, 26(2):244-246(in Chinese).
[67]王桂珍, 李兆君, 張樹清, 等. 土霉素在雞糞好氧堆肥過程中的降解及其對相關(guān)參數(shù)的影響[J]. 環(huán)境科學, 2013, 34(2):795-803.WANG G Z, LI Z J, ZHANG S Q, et al. Degradation of oxytetracycline in chicken feces aerobic-composting and its effects on their related parameters[J]. Environmental Science, 2013, 34(2):795-803(in Chinese).
[68]RAMASWAMY J, PRASHER S O, PATEL R M, et al. The effect of composting on the degradation of a veterinary pharmaceutical[J]. Bioresource Technology, 2010, 101(7):2294-2299. [69]張紅娟, 郭夏麗, 王巖. 林可霉素菌渣與牛糞聯(lián)合堆肥實驗研究[J]. 環(huán)境工程學報, 2011, 5(1):231-234.ZHANG H J, GUO X L, WANG Y. Study on composting of lincomycin fermentation dregs and cattle manure[J]. Chinese Journal of Environmental Engineering, 2011, 5(1):231-234(in Chinese).
[70]何魯波, 李新新, 黃周珍. 抗生素制藥菌渣處理技術(shù)[J]. 畜牧獸醫(yī)科學(電子版), 2019(6):53-54. HE L B, LI X X, HUANG Z Z. Antibiotic bacterium residue treatment technology[J]. Graziery Veterinary Science(Electronic Version), 2019(6):53-54(in Chinese). [71]唐海峰, 王俊峰. 制紅霉素廢渣吸附水中Pb2+的試驗研究[J]. 金屬礦山, 2011(8):155-158. TANG H F, WANG J F. Experimental research on adsorption of Pb2+ by erythromycin pharmaceutical waste residues[J]. Mental Mine, 2011(8):155-158(in Chinese).
[72]占金寶, 蘇海佳. 青霉菌絲體分子印跡吸附膜對Cr(Ⅲ)的吸附性能[J]. 北京化工大學學報(自然科學版), 2010, 37(4):94-97. ZHAN J B, SU H J. Adsorption of Cr(Ⅲ) by a membrane molecularly imprinted with penicillium mycelium[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2010, 37(4):94-97(in Chinese). [73]胡波, 蘇海佳, 譚天偉. 改性菌絲體對Ni2+的吸附特性研究[J]. 環(huán)境污染治理技術(shù)與設備, 2003(10):23-26. HU B, SU H J, TAN T W. Study of adsorption property of modified mycelial biomass to Ni2+[J]. Technologies and Equipment for Environmental Pollution Control, 2003(10):23-26(in Chinese).
相關(guān)知識
處理費用高昂?標準尚不完善?抗生素菌渣處置難題待解
利用生物炭技術(shù)處理酸性礦山廢水的研究進展
非熱殺菌技術(shù)在肉及肉制品中的應用研究進展
纖維素/殼聚糖復合材料應用研究進展
茶皂素的結(jié)構(gòu)和生物活性研究進展
綠茶茶渣中蛋白質(zhì)的提取技術(shù)研究
茶渣蛋白抗氧化肽制備及其活性研究
茶渣營養(yǎng)成分分析及詞料化技術(shù)研究
廢棄茶渣綜合再利用研究進展
廢棄茶渣綜合再利用研究進展.pdf
網(wǎng)址: 抗生素菌渣處理技術(shù)研究進展 http://m.u1s5d6.cn/newsview728375.html
推薦資訊
- 1發(fā)朋友圈對老公徹底失望的心情 12775
- 2BMI體重指數(shù)計算公式是什么 11235
- 3補腎吃什么 補腎最佳食物推薦 11199
- 4性生活姿勢有哪些 盤點夫妻性 10425
- 5BMI正常值范圍一般是多少? 10137
- 6在線基礎代謝率(BMR)計算 9652
- 7一邊做飯一邊躁狂怎么辦 9138
- 8從出汗看健康 出汗透露你的健 9063
- 9早上怎么喝水最健康? 8613
- 10五大原因危害女性健康 如何保 7826