利用生物炭技術(shù)處理酸性礦山廢水的研究進(jìn)展
摘要:隨著社會(huì)經(jīng)濟(jì)的不斷發(fā)展,礦業(yè)開(kāi)發(fā)過(guò)程中產(chǎn)生的一系列環(huán)境問(wèn)題引起國(guó)內(nèi)外的廣泛關(guān)注,其中采礦過(guò)程中產(chǎn)生的酸性礦山廢水(acid mine drainage, AMD)問(wèn)題尤為突出。AMD會(huì)導(dǎo)致水質(zhì)酸化、土壤重金屬污染以及植物枯萎死亡等問(wèn)題。因此,如何對(duì)AMD進(jìn)行有效處理已成為環(huán)境治理的焦點(diǎn)問(wèn)題?,F(xiàn)有的AMD處理方法主要包括中和法、人工濕地法和微生物法,但這些方法大多存在后續(xù)管理難、維護(hù)成本高、處理濃度低等問(wèn)題。相比之下,生物炭技術(shù)因原料成本低、制備簡(jiǎn)便且原材料來(lái)源廣泛等優(yōu)點(diǎn)而被廣泛應(yīng)用于環(huán)境修復(fù)領(lǐng)域。近年來(lái)國(guó)內(nèi)外已有關(guān)于利用生物炭技術(shù)處理AMD的研究報(bào)道,但其處理機(jī)制尚不清楚,許多研究還停留在實(shí)驗(yàn)室階段,尚未形成規(guī)模化的應(yīng)用模式。因此,本文首先對(duì)AMD的特征及其常用處理方法進(jìn)行了概述,并介紹了生物炭的常規(guī)制備方法及理化性質(zhì)表征,對(duì)生物炭處理AMD的影響因素、處理效果及其機(jī)理進(jìn)行了綜述,最后對(duì)生物炭技術(shù)在處理AMD方面的研究與應(yīng)用進(jìn)行了展望。
Abstract:With the rapid development of society and economy, a series of environmental problems in mining development have attracted wide attention all over the world, especially the acid mine drainage (AMD) issue. AMD can cause a series of ecological environment problems, such as water acidification, soil contamination with heavy metals, and plant wilting and apoptosis. Therefore, the treatment of AMD has become the focus of environmental governance. The current disposal methods of AMD mainly include neutralization method, constructed wetland method and microbial method. However, most of these treatment methods have the problems of difficult follow-up management, high maintenance cost and low treatment concentration. In contrast, biochar technology has been widely used in the field of environmental remediation due to its advantages such as low cost, easy preparation and wide source of raw materials. In recent years, there have been some reports on the treatment of AMD with biochar technology, but the treatment mechanism is still unclear, and many studies are still in its infancy, which has not yet formed a large-scale application model. Therefore, in this paper, the characteristics of AMD and its common treatment methods are summarized, the conventional preparation methods and physicochemical properties of biochar are introduced, the influencing factors, effect and mechanism of biochar treatment of AMD are reviewed. Finally the prospect of the research and application of biochar in AMD treatment is proposed.
圖 1 AMD的常用處理方法
Figure 1. Common treatments for AMD
圖 2 生物炭的制備方法及其應(yīng)用
Figure 2. Preparation of biochar and its application
圖 3 生物炭對(duì)AMD中不同重金屬離子的吸附機(jī)理
Figure 3. Adsorption mechanism of biochar on different heavy metal ions in AMD
表 1 AMD各種處理方法優(yōu)缺點(diǎn)比較
Table 1. Comparison of advantages and disadvantages of various AMD processing methods
處理方法Processing methods
優(yōu)點(diǎn)Advantages
缺點(diǎn)Disadvantages
微生物燃料電池技術(shù)原料來(lái)源廣、溫和高效能耗大、運(yùn)行費(fèi)用高、設(shè)備要求高物理化學(xué)法離子去除率高對(duì)吸附材料膜的性能要求較高,運(yùn)行成本偏高,對(duì)水體、溫度、停留時(shí)間等要求高微生物法簡(jiǎn)單易行、成本低廉、環(huán)境友好、適應(yīng)性強(qiáng)、不會(huì)發(fā)生二次污染操作環(huán)境不易控制人工濕地法環(huán)境友好、處理效果好、成本低、
不會(huì)發(fā)生二次污染占地面積大、時(shí)間長(zhǎng)、各種作用難以控制
電化學(xué)法清潔的去除方式、效率高、占地少、
不會(huì)發(fā)生二次污染初始投資大、電力供應(yīng)大、電極材料壽命短等問(wèn)題難以突破中和法初始成本低、操作簡(jiǎn)單、對(duì)設(shè)備要求相對(duì)簡(jiǎn)單、處理效果好產(chǎn)生大量污泥易造成二次污染,增大處理成本源頭治理技術(shù)高效經(jīng)濟(jì)、不會(huì)對(duì)環(huán)境產(chǎn)生二次傷害技術(shù)不夠成熟 [1]王磊, 李澤琴, 姜磊. 酸性礦山廢水的危害與防治對(duì)策研究 [J]. 環(huán)境科學(xué)與管理, 2009, 34(10): 82-84. doi: 10.3969/j.issn.1673-1212.2009.10.020
WANG L, LI Z Q, JIANG L. Acidic mine waste water hazards and countermeasures research [J]. Environmental Science and Management, 2009, 34(10): 82-84(in Chinese). doi: 10.3969/j.issn.1673-1212.2009.10.020
[2]牟力, 何騰兵, 黃會(huì)前, 等. 酸性礦山廢水治理技術(shù)的研究進(jìn)展 [J]. 天津農(nóng)業(yè)科學(xué), 2017, 23(2): 42-45. doi: 10.3969/j.issn.1006-6500.2017.02.010MOU L, HE T B, HUANG H Q, et al. Progress in research on the acid mine drainage treatment [J]. Tianjin Agricultural Sciences, 2017, 23(2): 42-45(in Chinese). doi: 10.3969/j.issn.1006-6500.2017.02.010
[3]劉志勇, 陳建中, 康海笑, 等. 酸性礦山廢水的處理研究 [J]. 四川環(huán)境, 2004, 23(6): 50-53,57. doi: 10.3969/j.issn.1001-3644.2004.06.014LIU Z Y, CHEN J Z, KANG H X, et al. Treatment and study of acid mine drainage [J]. Sichuan Environment, 2004, 23(6): 50-53,57(in Chinese). doi: 10.3969/j.issn.1001-3644.2004.06.014
[4]鄧川, 陳韻竹, 李瑤. 礦山廢水處理的研究綜述 [J]. 當(dāng)代化工研究, 2017(11): 57-58. doi: 10.3969/j.issn.1672-8114.2017.11.035DENG C, CHEN Y Z, LI Y. Review of research on mine wastewater treatment [J]. Modern Chemical Research, 2017(11): 57-58(in Chinese). doi: 10.3969/j.issn.1672-8114.2017.11.035
[5]鐘曉曉, 王濤, 原文麗, 等. 生物炭的制備、改性及其環(huán)境效應(yīng)研究進(jìn)展 [J]. 湖南師范大學(xué)自然科學(xué)學(xué)報(bào), 2017, 40(5): 44-50. doi: 10.7612/j.issn.1000-2537.2017.05.007ZHONG X X, WANG T, YUAN W L, et al. Progresses of preparation, modification and environmental behavior of biochar [J]. Journal of Natural Science of Hunan Normal University, 2017, 40(5): 44-50(in Chinese). doi: 10.7612/j.issn.1000-2537.2017.05.007
[6]WANG B, MA Y N, LEE X, et al. Environmental-friendly coal gangue-biochar composites reclaiming phosphate from water as a slow-release fertilizer [J]. Science of the Total Environment, 2021, 758: 143664. doi: 10.1016/j.scitotenv.2020.143664 [7]WANG B, WAN Y S, ZHENG Y L, et al. Alginate-based composites for environmental applications: A critical review [J]. Critical Reviews in Environmental Science and Technology, 2019, 49(4): 318-356. doi: 10.1080/10643389.2018.1547621 [8]WANG B, GAO B, WAN Y S. Comparative study of calcium alginate, ball-milled biochar, and their composites on aqueous methylene blue adsorption [J]. Environmental Science and Pollution Research, 2019, 26(12): 11535-11541. doi: 10.1007/s11356-018-1497-1 [9]WANG B, GAO B, WAN Y S. Entrapment of ball-milled biochar in Ca-alginate beads for the removal of aqueous Cd(Ⅱ) [J]. Journal of Industrial and Engineering Chemistry, 2018, 61: 161-168. doi: 10.1016/j.jiec.2017.12.013 [10]馬超然, 張緒超, 王朋, 等. 生物炭理化性質(zhì)對(duì)其反應(yīng)活性的影響 [J]. 環(huán)境化學(xué), 2019, 38(11): 2425-2434.MA C R, ZHANG X C, WANG P, et al. Effect of physical and chemical properties of biochar on its reactivity [J]. Environmental Chemistry, 2019, 38(11): 2425-2434(in Chinese).
[11]TENG D Y, ZHANG B B, XU G M, et al. Efficient removal of Cd(Ⅱ) from aqueous solution by pinecone biochar: Sorption performance and governing mechanisms [J]. Environmental Pollution, 2020, 265: 115001. doi: 10.1016/j.envpol.2020.115001 [12]DAI W J, WU P, LIU D, et al. Adsorption of polycyclic aromatic hydrocarbons from aqueous solution by organic montmorillonite sodium alginate nanocomposites [J]. Chemosphere, 2020, 251: 126074. doi: 10.1016/j.chemosphere.2020.126074 [13]WANG Q, WANG B, LEE X, et al. Sorption and desorption of Pb(Ⅱ) to biochar as affected by oxidation and pH [J]. Science of the Total Environment, 2018, 634: 188-194. doi: 10.1016/j.scitotenv.2018.03.189 [14]WANG B, LEHMANN J, HANLEY K, et al. Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH [J]. Chemosphere, 2015, 138: 120-126. doi: 10.1016/j.chemosphere.2015.05.062 [15]曹瑋, 周航, 鄧貴友, 等. 改性谷殼生物炭負(fù)載磁性Fe去除廢水中Pb2+的效果及機(jī)制 [J]. 環(huán)境工程學(xué)報(bào), 2017, 11(3): 1437-1444. doi: 10.12030/j.cjee.201511081CAO W, ZHOU H, DENG G Y, et al. Effects and mechanisms of magnetic iron supported on rice husk biochar removing Pb2+ in wastewater [J]. Chinese Journal of Environmental Engineering, 2017, 11(3): 1437-1444(in Chinese). doi: 10.12030/j.cjee.201511081
[16]劉秀, 劉立恒, 劉睿, 等. 籠芯陶黑碳微珠生物炭去除模擬廢水中鉻的實(shí)驗(yàn)研究[J]. 環(huán)境工程, 2021, 29(3): 75-81LIU X, LIU L H, LIU R, et al. Experimental study on Cr removal from simulated wastewater by cage core black carbon beads[J/OL]. Environmental Engineering , 2021, 29(3): 75-81.
[17]魏嘯楠, 張倩, 李孟, 等. 磷酸改性生物炭負(fù)載硫化錳去除廢水中重金屬鎘 [J]. 中國(guó)環(huán)境科學(xué), 2020, 40(5): 2095-2102. doi: 10.3969/j.issn.1000-6923.2020.05.028WEI X N, ZHANG Q, LI M, et al. Removal of cadmium in wastewater by phosphoric acid modified biochar supported manganese sulfide [J]. China Environmental Science, 2020, 40(5): 2095-2102(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.05.028
[18]MOHAPATRA S, KUMAR M, KARIM A A, et al. Biochars evaluation for chromium pollution abatement in chromite mine wastewater and overburden of Sukinda, Odisha, India [J]. Arabian Journal of Geosciences, 2020, 13(13): 1-14. [19]GIACHINI A J, SULZBACH T S, PINTO A L, et al. Microbially-enriched poultry litter-derived biochar for the treatment of acid mine drainage [J]. Archives of Microbiology, 2018, 200(8): 1227-1237. doi: 10.1007/s00203-018-1534-y [20]OH S Y, YOON M K. Biochar for treating acid mine drainage [J]. Environmental Engineering Science, 2013, 30(10): 589-593. doi: 10.1089/ees.2013.0063 [21]LIATSOU I, PASHALIDIS I, DOSCHE C. Cu(Ⅱ) adsorption on 2-thiouracil-modified Luffa cylindrica biochar fibres from artificial and real samples, and competition reactions with U(Ⅵ) [J]. Journal of Hazardous Materials, 2020, 383: 120950. doi: 10.1016/j.jhazmat.2019.120950 [22]MOSLEY L M, WILLSON P, HAMILTON B, et al. The capacity of biochar made from common reeds to neutralise pH and remove dissolved metals in acid drainage [J]. Environmental Science and Pollution Research, 2015, 22(19): 15113-15122. doi: 10.1007/s11356-015-4735-9 [23]INYANG M I, GAO B, YAO Y, et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal [J]. Critical Reviews in Environmental Science and Technology, 2016, 46(4): 406-433. doi: 10.1080/10643389.2015.1096880 [24]辛瑞瑞. 不同酸性廢水庫(kù)中微生物群落季節(jié)變化及宏基因組學(xué)研究 [D]. 北京: 中國(guó)地質(zhì)大學(xué)(北京), 2019.XIN R R. Seasonal variation of microbial community and metagenomics analysis in different acid mine drainage lakes [D]. Beijing: China University of Geosciences, 2019.
[25]白潤(rùn)才, 李彬, 李三川, 等. 礦山酸性廢水處理技術(shù)現(xiàn)狀及進(jìn)展 [J]. 長(zhǎng)江科學(xué)院院報(bào), 2015, 32(2): 14-19.BAI R C, LI B, LI S C, et al. Development and status of the treatment technology for acid mine drainage [J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(2): 14-19(in Chinese).
[26]王穎南, 鄧奇根, 王浩, 等. 硫酸鹽還原菌胞外聚合物處理酸性礦山廢水的研究進(jìn)展 [J]. 水處理技術(shù), 2020, 46(12): 7-11.WANG Y N, DENG Q G, WANG H, et al. Research progress on treatment of acid mine wastewater by extracellular polymeric substances of sulfate reducing bacteria [J]. Technology of Water Treatment, 2020, 46(12): 7-11(in Chinese).
[27]洪思奇. 聚吡咯改性活性炭去除酸性礦山廢水中的硫酸鹽 [D]. 北京: 中國(guó)地質(zhì)大學(xué)(北京), 2014.HONG S Q. Sulfate removal from acid mine drainage using polypyrrole-grafted activated carbon [D]. Beijing: China University of Geosciences, 2014.
[28]王賀松. 酸性礦山廢水中處理技術(shù)的研究進(jìn)展 [J]. 民營(yíng)科技, 2018(5): 62.WANG H S. Research progress of treatment technology in acid mine wastewater [J]. Private Technology, 2018(5): 62(in Chinese).
[29]KEFENI K K, MSAGATI T A M, MAMBA B B. Acid mine drainage: Prevention, treatment options, and resource recovery: A review [J]. Journal of Cleaner Production, 2017, 151: 475-493. doi: 10.1016/j.jclepro.2017.03.082 [30]鄭琳姍, 張秀玲, 李惠雨, 等. 微生物燃料電池技術(shù)及其影響因素研究進(jìn)展 [J]. 精細(xì)化工, 2021, 38(1): 1-8.ZHENG L S, ZHANG X L, LI H Y, et al. Research progress on microbial fuel cell technology and its influencing factors [J]. Fine Chemicals, 2021, 38(1): 1-8(in Chinese).
[31]丁偉, 阿柔娜, 付志敏, 等. 重金屬離子對(duì)微生物燃料電池產(chǎn)電性能的影響 [J]. 環(huán)境工程, 2016, 34(7): 61-65.DING W, A R N, FU Z M, et al. The influence of heavy metal ions on the microbial fuel cell performance [J]. Environmental Engineering, 2016, 34(7): 61-65(in Chinese).
[32]FADZLI F S, RASHID M, YAQOOB A A, et al. Electricity generation and heavy metal remediation by utilizing yam (Dioscorea alata) waste in benthic microbial fuel cells (BMFCs) [J]. Biochemical Engineering Journal, 2021, 172: 108067. doi: 10.1016/j.bej.2021.108067 [33]FU W, JI G Z, CHEN H H, et al. Molybdenum sulphide modified chelating resin for toxic metal adsorption from acid mine wastewater [J]. Separation and Purification Technology, 2020, 251: 117407. doi: 10.1016/j.seppur.2020.117407 [34]辛金豪. 離子交換法處理回用電鍍含鉻廢水的研究進(jìn)展 [J]. 資源節(jié)約與環(huán)保, 2015(7): 36,39.XIN J H. Ion exchange method and treatment of recycling the research progress of electroplating wastewater containing chromium [J]. Resources Economization & Environmental Protection, 2015(7): 36,39(in Chinese).
[35]隋巖峰, 劉松林, 楊帆. 反滲透膜處理磷肥廢水的實(shí)驗(yàn)研究 [J]. 應(yīng)用化工, 2019, 48(4): 823-826. doi: 10.3969/j.issn.1671-3206.2019.04.020SUI Y F, LIU S L, YANG F. Experimental study on the treatment of phosphate fertilizer wastewater by reverse osmosis membrane [J]. Applied Chemical Industry, 2019, 48(4): 823-826(in Chinese). doi: 10.3969/j.issn.1671-3206.2019.04.020
[36]戴祥昕, 桂夢(mèng)瑤, 杜俊逸, 等. 硫酸鹽還原菌包覆礦石控制酸性廢水排放及碳源的優(yōu)選研究 [J]. 地球與環(huán)境, 2021, 49(1): 73-81.DAI X X, GUI M Y, DU J Y, et al. Sulphate-reducing bacteria covered mine refuse to control acid mine drainage and the optimization of relevant carbon sources [J]. Earth and Environment, 2021, 49(1): 73-81(in Chinese).
[37]SAHINKAYA E, DURSUN N, OZKAYA B, et al. Use of landfill leachate as a carbon source in a sulfidogenic fluidized-bed reactor for the treatment of synthetic acid mine drainage [J]. Minerals Engineering, 2013, 48: 56-60. doi: 10.1016/j.mineng.2012.10.019 [38]龍中, 吳攀, 黃家琰, 等. 多級(jí)復(fù)氧反應(yīng)-垂直流人工濕地深度處理煤礦酸性廢水 [J]. 環(huán)境工程學(xué)報(bào), 2019, 13(6): 1391-1399. doi: 10.12030/j.cjee.201810086LONG Z, WU P, HUANG J Y, et al. Advanced treatment of acid mine drainage by multi-stage reoxygenation reaction-vertical flow constructed wetland [J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1391-1399(in Chinese). doi: 10.12030/j.cjee.201810086
[39]徐晶晶, 張繼偉, 崔樹(shù)軍, 等. 煤矸石山酸性廢水污染控制技術(shù)研究進(jìn)展 [J]. 中國(guó)礦業(yè), 2017, 26(1): 43-48. doi: 10.3969/j.issn.1004-4051.2017.01.012XU J J, ZHANG J W, CUI S J, et al. Research progress in pollution control technologies of acidic wastewater from coal gangue [J]. China Mining Magazine, 2017, 26(1): 43-48(in Chinese). doi: 10.3969/j.issn.1004-4051.2017.01.012
[40]蔣文瑞, 涂志紅, 周姝, 等. 黃鐵礦表面氧化機(jī)理及動(dòng)力學(xué)影響因素研究進(jìn)展 [J]. 金屬礦山, 2021(3): 88-102.JIANG W R, TU Z H, ZHOU S, et al. A brief overview on the mechanism and kinetic influencing factors of the pyrite surface oxidation [J]. Metal Mine, 2021(3): 88-102(in Chinese).
[41]SKOUSEN J G, ZIEMKIEWICZ P F, MCDONALD L M. Acid mine drainage formation, control and treatment: Approaches and strategies [J]. The Extractive Industries and Society, 2019, 6(1): 241-249. doi: 10.1016/j.exis.2018.09.008 [42]朱愛(ài)平, 田虎偉. 淺談金屬礦山酸性廢水處理工藝 [J]. 現(xiàn)代礦業(yè), 2020, 36(1): 204-206. doi: 10.3969/j.issn.1674-6082.2020.01.062ZHU A P, TIAN H W. Discussion on acid mine waste water treatment process in metal mine [J]. Modern Mining, 2020, 36(1): 204-206(in Chinese). doi: 10.3969/j.issn.1674-6082.2020.01.062
[43]曾威鴻, 董穎博, 林海. 酸性礦山廢水源頭控制技術(shù)研究進(jìn)展 [J]. 安全與環(huán)境工程, 2020, 27(1): 104-110.ZENG W H, DONG Y B, LIN H. Research progress of source control technologies of acid mine drainage [J]. Safety and Environmental Engineering, 2020, 27(1): 104-110(in Chinese).
[44]YANG B J, LUO W, WANG X X, et al. The use of biochar for controlling acid mine drainage through the inhibition of chalcopyrite biodissolution [J]. Science of the Total Environment, 2020, 737: 139485. doi: 10.1016/j.scitotenv.2020.139485 [45]CHAI Y Z, QIN P F, ZHANG J C, et al. Simultaneous removal of Fe(Ⅱ) and Mn(Ⅱ) from acid mine wastewater by electro-Fenton process [J]. Process Safety and Environmental Protection, 2020, 143: 76-90. doi: 10.1016/j.psep.2020.06.026 [46]叢宏斌, 趙立欣, 姚宗路, 等. 我國(guó)生物質(zhì)炭化技術(shù)裝備研究現(xiàn)狀與發(fā)展建議 [J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào), 2015, 20(2): 21-26. doi: 10.11841/j.issn.1007-4333.2015.02.003CONG H B, ZHAO L X, YAO Z L, et al. Research status of biomass carbonization technical equipment and proposals for its development in China [J]. Journal of China Agricultural University, 2015, 20(2): 21-26(in Chinese). doi: 10.11841/j.issn.1007-4333.2015.02.003
[47]孟凡彬, 孟軍. 生物質(zhì)炭化技術(shù)研究進(jìn)展 [J]. 生物質(zhì)化學(xué)工程, 2016, 50(6): 61-66. doi: 10.3969/j.issn.1673-5854.2016.06.010MENG F B, MENG J. Review of biomass carbonization technology [J]. Biomass Chemical Engineering, 2016, 50(6): 61-66(in Chinese). doi: 10.3969/j.issn.1673-5854.2016.06.010
[48]韋思業(yè). 不同生物質(zhì)原料和制備溫度對(duì)生物炭物理化學(xué)特征的影響 [D]. 廣州: 中國(guó)科學(xué)院大學(xué)(中國(guó)科學(xué)院廣州地球化學(xué)研究所), 2017.WEI S Y. Influence of biomass feedstocks and pyrolysis temperatures on physical and chemical properties of biochar [D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, , 2017(in Chinese).
[49]XIANG W, ZHANG X Y, CHEN J J, et al. Biochar technology in wastewater treatment: A critical review [J]. Chemosphere, 2020, 252: 126539. doi: 10.1016/j.chemosphere.2020.126539 [50]王志鵬, 陳蕾. 秸稈生物炭的研究進(jìn)展 [J]. 應(yīng)用化工, 2019, 48(2): 444-447. doi: 10.3969/j.issn.1671-3206.2019.02.045WANG Z P, CHEN L. Research progress on straw-based biochar [J]. Applied Chemical Industry, 2019, 48(2): 444-447(in Chinese). doi: 10.3969/j.issn.1671-3206.2019.02.045
[51]李湘萍, 張建光. 生物質(zhì)熱解制備多孔炭材料的研究進(jìn)展 [J]. 石油學(xué)報(bào)(石油加工), 2020, 36(5): 1101-1110.LI X P, ZHANG J G. Progress on biochar preparation through pyrolysis process [J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(5): 1101-1110(in Chinese).
[52]OGINNI O, SINGH K. Influence of high carbonization temperatures on microstructural and physicochemical characteristics of herbaceous biomass derived biochars [J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104169. doi: 10.1016/j.jece.2020.104169 [53]YUAN J H, XU R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol [J]. Soil Use and Management, 2011, 27(1): 110-115. doi: 10.1111/j.1475-2743.2010.00317.x [54]FENG Q W, WANG B, CHEN M, et al. Invasive plants as potential sustainable feedstocks for biochar production and multiple applications: A review [J]. Resources, Conservation and Recycling, 2021, 164: 105204. doi: 10.1016/j.resconrec.2020.105204 [55]盤(pán)麗珍. 大豆秸稈生物炭對(duì)金屬硫化物尾礦污染土壤的修復(fù)作用[D]. 湘潭: 湖南科技大學(xué), 2017.PAN L Z. The remediation of metal mine tailings contaminated siol by biochar derived from soybean straw[D]. Xiangtan: Hunan University of Science and Technology, 2017.
[56]張?zhí)鞓?lè), 邱凌, 王雅君. 慢速熱解對(duì)玉米秸稈炭理化特性的影響 [J]. 可再生能源, 2019, 37(10): 1423-1428. doi: 10.3969/j.issn.1671-5292.2019.10.001ZHANG T L, QIU L, WANG Y J. Study on process optimization of slow pyrolysis parameters of corn stalks [J]. Renewable Energy Resources, 2019, 37(10): 1423-1428(in Chinese). doi: 10.3969/j.issn.1671-5292.2019.10.001
[57]李敏, 趙立欣, 孟海波, 等. 慢速熱解條件下生物炭理化特性分析 [J]. 農(nóng)機(jī)化研究, 2015, 37(3): 248-253. doi: 10.3969/j.issn.1003-188X.2015.03.061LI M, ZHAO L X, MENG H B, et al. Analysis of biochar physical and chemical properties under the condition of slow pyrolysis [J]. Journal of Agricultural Mechanization Research, 2015, 37(3): 248-253(in Chinese). doi: 10.3969/j.issn.1003-188X.2015.03.061
[58]肖琴, 劉有才, 曹占芳, 等. 生物炭吸附廢水中重金屬離子的研究進(jìn)展 [J]. 環(huán)境科技, 2019, 32(1): 68-73.XIAO Q, LIU Y C, CAO Z F, et al. Research progress on the absorption of heavy metals from wastewater by biochar [J]. Environmental Science and Technology, 2019, 32(1): 68-73(in Chinese).
[59]高凱芳, 簡(jiǎn)敏菲, 余厚平, 等. 裂解溫度對(duì)稻稈與稻殼制備生物炭表面官能團(tuán)的影響 [J]. 環(huán)境化學(xué), 2016, 35(8): 1663-1669. doi: 10.7524/j.issn.0254-6108.2016.08.2016010607GAO K F, JIAN M F, YU H P, et al. Effects of pyrolysis temperatures on the biochars and its surface functional groups made from rice straw and rice husk [J]. Environmental Chemistry, 2016, 35(8): 1663-1669(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.08.2016010607
[60]勾芒芒, 屈忠義. 生物炭對(duì)改善土壤理化性質(zhì)及作物產(chǎn)量影響的研究進(jìn)展 [J]. 中國(guó)土壤與肥料, 2013(5): 1-5. doi: 10.11838/sfsc.20130501GOU M M, QU Z Y. Research on using biochar to agricultural soil amendment and crop yield [J]. Soil and Fertilizer Sciences in China, 2013(5): 1-5(in Chinese). doi: 10.11838/sfsc.20130501
[61]王彤彤, 王曉琳, 任志勝, 等. 不同原料制備的生物炭形貌結(jié)構(gòu)及表面特性研究 [J]. 環(huán)境科學(xué)與技術(shù), 2017, 40(1): 42-48.WANG T T, WANG X L, REN Z S, et al. Microscopic morphology and surface features of biochars derived from different raw materials [J]. Environmental Science & Technology, 2017, 40(1): 42-48(in Chinese).
[62]劉青松, 趙麗芳. 熱解溫度對(duì)生物炭表面性質(zhì)及釋放氮磷的影響 [J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào), 2016, 33(2): 164-169.LIU Q S, ZHAO L F. Effects of biochar pyrolysis temperature on its surface characteristics and nitrogen and phosphorus release [J]. Journal of Agricultural Resources and Environment, 2016, 33(2): 164-169(in Chinese).
[63]范世鎖, 劉文浦, 王錦濤, 等. 茶渣生物炭制備及其對(duì)溶液中四環(huán)素的去除特性 [J]. 環(huán)境科學(xué), 2020, 41(3): 1308-1318.FAN S S, LIU W P, WANG J T, et al. Preparation of tea waste biochar and its application in tetracycline removal from aqueous solution [J]. Environmental Science, 2020, 41(3): 1308-1318(in Chinese).
[64]孫濤, 朱新萍, 李典鵬, 等. 不同原料生物炭理化性質(zhì)的對(duì)比分析 [J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào), 2017, 34(6): 543-549.SUN T, ZHU X P, LI D P, et al. Comparison of biochars characteristics from different raw materials [J]. Journal of Agricultural Resources and Environment, 2017, 34(6): 543-549(in Chinese).
[65]林珈羽, 張?jiān)? 劉沅, 等. 不同原料和炭化溫度下制備的生物炭結(jié)構(gòu)及性質(zhì) [J]. 環(huán)境工程學(xué)報(bào), 2016, 10(6): 3200-3206. doi: 10.12030/j.cjee.201501107LIN J Y, ZHANG Y, LIU Y, et al. Structure and properties of biochar under different materials and carbonization temperatures [J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 3200-3206(in Chinese). doi: 10.12030/j.cjee.201501107
[66]尹云鋒, 張鵬, 雷海迪, 等. 不同熱解溫度對(duì)生物質(zhì)炭化學(xué)性質(zhì)的影響 [J]. 熱帶作物學(xué)報(bào), 2014, 35(8): 1496-1500. doi: 10.3969/j.issn.1000-2561.2014.08.008YIN Y F, ZHANG P, LEI H D, et al. Influence of different pyrolysis temperature on chemical properties of biochar [J]. Chinese Journal of Tropical Crops, 2014, 35(8): 1496-1500(in Chinese). doi: 10.3969/j.issn.1000-2561.2014.08.008
[67]胡華英, 曹升, 楊靖宇, 等. 生物炭對(duì)杉木人工林土壤磷素吸附解吸特性的影響 [J]. 西北林學(xué)院學(xué)報(bào), 2019, 34(4): 8-15. doi: 10.3969/j.issn.1001-7461.2019.04.02HU H Y, CAO S, YANG J Y, et al. Effects of biochar on phosphorus adsorption and desorption characteristics of Cunninghamia lanceolata plantation [J]. Journal of Northwest Forestry University, 2019, 34(4): 8-15(in Chinese). doi: 10.3969/j.issn.1001-7461.2019.04.02
[68]周強(qiáng), 黃代寬, 余浪, 等. 熱解溫度和時(shí)間對(duì)生物炭pH值的影響 [J]. 地球環(huán)境學(xué)報(bào), 2015, 6(3): 195-200. doi: 10.7515/JEE201503008ZHOU Q, HUANG D K, YU L, et al. Effects of pyrolysis temperature, time and biochar mass ratio on pH value determination for four biochar solutions [J]. Journal of Earth Environment, 2015, 6(3): 195-200(in Chinese). doi: 10.7515/JEE201503008
[69]徐佳, 劉榮厚. 不同慢速熱裂解工藝條件下棉花秸稈生物炭的理化特性分析 [J]. 上海交通大學(xué)學(xué)報(bào)(農(nóng)業(yè)科學(xué)版), 2017, 35(2): 19-24.XU J, LIU R H. Physicochemical properties of cotton stalk biochar under different slow pyrolysis conditions [J]. Journal of Shanghai Jiao Tong University (Agricultural Science), 2017, 35(2): 19-24(in Chinese).
[70]MENG J, FENG X L, DAI Z M, et al. Adsorption characteristics of Cu(Ⅱ) from aqueous solution onto biochar derived from swine manure [J]. Environmental Science and Pollution Research, 2014, 21(11): 7035-7046. doi: 10.1007/s11356-014-2627-z [71]WANG H, TAN L Y, HU B W, et al. Removal of Cr(Ⅵ) from acid mine drainage with clay-biochar composite [J]. Desalination and Water Treatment, 2019, 165: 212-221. doi: 10.5004/dwt.2019.24572 [72]YOON K, CHO D W, TSANG D C W, et al. Fabrication of engineered biochar from paper mill sludge and its application into removal of arsenic and cadmium in acidic water [J]. Bioresource Technology, 2017, 246: 69-75. doi: 10.1016/j.biortech.2017.07.020 [73]PAN J J, JIANG J, XU R K. Adsorption of Cr(Ⅲ) from acidic solutions by crop straw derived biochars [J]. Journal of Environmental Sciences, 2013, 25(10): 1957-1965. doi: 10.1016/S1001-0742(12)60305-2 [74]劉延湘, 黃彪, 張麗. 花生殼生物炭對(duì)水中重金屬Cr6+、Cu2+的吸附研究 [J]. 科學(xué)技術(shù)與工程, 2017, 17(13): 81-85. doi: 10.3969/j.issn.1671-1815.2017.13.015LIU Y X, HUANG B, ZHANG L. Adsorption of heavy metal Cr6+ and Cu2+ in aqueous solutions by peanut shell biochar [J]. Science Technology and Engineering, 2017, 17(13): 81-85(in Chinese). doi: 10.3969/j.issn.1671-1815.2017.13.015
[75]王桂仙, 張啟偉. 竹炭對(duì)水體中重金屬離子的吸附規(guī)律研究 [J]. 化學(xué)與生物工程, 2008, 25(3): 66-68. doi: 10.3969/j.issn.1672-5425.2008.03.019WANG G X, ZHANG Q W. Adsorption law of bamboo-charcoal for heavy metal ions in aqueous solution [J]. Chemistry & Bioengineering, 2008, 25(3): 66-68(in Chinese). doi: 10.3969/j.issn.1672-5425.2008.03.019
[76]PARK J H, CHO J S, OK Y S, et al. Comparison of single and competitive metal adsorption by pepper stem biochar [J]. Archives of Agronomy and Soil Science, 2016, 62(5): 617-632. doi: 10.1080/03650340.2015.1074186 [77]王重慶, 王暉, 江小燕, 等. 生物炭吸附重金屬離子的研究進(jìn)展 [J]. 化工進(jìn)展, 2019, 38(1): 692-706.WANG C Q, WANG H, JIANG X Y, et al. Research advances on adsorption of heavy metals by biochar [J]. Chemical Industry and Engineering Progress, 2019, 38(1): 692-706(in Chinese).
[78]楊選民, 王雅君, 邱凌, 等. 溫度對(duì)生物質(zhì)三組分熱解制備生物炭理化特性的影響 [J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2017, 48(4): 284-290. doi: 10.6041/j.issn.1000-1298.2017.04.037YANG X M, WANG Y J, QIU L, et al. Effect of temperature on physicochemical properties of biochar prepared by pyrolysis of three components of biomass [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(4): 284-290(in Chinese). doi: 10.6041/j.issn.1000-1298.2017.04.037
[79]蔣艷艷, 胡孝明, 金衛(wèi)斌. 生物炭對(duì)廢水中重金屬吸附研究進(jìn)展 [J]. 湖北農(nóng)業(yè)科學(xué), 2013, 52(13): 2984-2988. doi: 10.3969/j.issn.0439-8114.2013.13.003JIANG Y Y, HU X M, JIN W B. Advances on absorption of heavy metals in the waste water by biochar [J]. Hubei Agricultural Sciences, 2013, 52(13): 2984-2988(in Chinese). doi: 10.3969/j.issn.0439-8114.2013.13.003
[80]丁文川, 杜勇, 曾曉嵐, 等. 富磷污泥生物炭去除水中Pb(Ⅱ)的特性研究 [J]. 環(huán)境化學(xué), 2012, 31(9): 1375-1380.DING W C, DU Y, ZENG X L, et al. Aqueous solution Pb(Ⅱ) removal by biochar derived from phosphorus-rich excess sludge [J]. Environmental Chemistry, 2012, 31(9): 1375-1380(in Chinese).
[81]徐楠楠, 林大松, 徐應(yīng)明, 等. 玉米秸稈生物炭對(duì)Cd2+的吸附特性及影響因素 [J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2014, 33(5): 958-964. doi: 10.11654/jaes.2014.05.019XU N N, LIN D S, XU Y M, et al. Adsorption of aquatic Cd2+ by biochar obtained from corn stover [J]. Journal of Agro-Environment Science, 2014, 33(5): 958-964(in Chinese). doi: 10.11654/jaes.2014.05.019
[82]ZHANG Z B, CAO X H, LIANG P, et al. Adsorption of uranium from aqueous solution using biochar produced by hydrothermal carbonization [J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295(2): 1201-1208. doi: 10.1007/s10967-012-2017-2 [83]沈州, 羅仙平, 周丹, 等. 生物炭對(duì)離子型稀土礦山尾水中氨氮的吸附特性研究 [J]. 中國(guó)稀土學(xué)報(bào), 2021, 17(5): 1-14.SHEN Z, LUO X P, ZHOU D, et al. Study on the adsorption characteristics of biochar to ammonia nitrogen in ionic rare earth mine tail water [J]. Journal of the Chinese Rare Earth Society, 2021, 17(5): 1-14(in Chinese).
[84]郭海艷, 李雪琴, 王章鴻, 等. 蚯蚓糞生物炭對(duì)Cu(Ⅱ)的吸附性能 [J]. 環(huán)境工程學(xué)報(bào), 2016, 10(7): 3811-3818. doi: 10.12030/j.cjee.201501229GUO H Y, LI X Q, WANG Z H, et al. Performances of Cu(Ⅱ) adsorption by biochar derived from earthworm manure [J]. Chinese Journal of Environmental Engineering, 2016, 10(7): 3811-3818(in Chinese). doi: 10.12030/j.cjee.201501229
[85]WANG B, LEHMANN J, HANLEY K, et al. Ammonium retention by oxidized biochars produced at different pyrolysis temperatures and residence times [J]. RSC Advances, 2016, 6(48): 41907-41913. doi: 10.1039/C6RA06419A [86]TONG X J, LI J Y, YUAN J H, et al. Adsorption of Cu(Ⅱ) by biochars generated from three crop straws [J]. Chemical Engineering Journal, 2011, 172(2/3): 828-834. [87]BANDARA T, XU J M, POTTER I D, et al. Mechanisms for the removal of Cd(Ⅱ) and Cu(Ⅱ) from aqueous solution and mine water by biochars derived from agricultural wastes [J]. Chemosphere, 2020, 254: 126745. doi: 10.1016/j.chemosphere.2020.126745 [88]戴靜, 劉陽(yáng)生. 四種原料熱解產(chǎn)生的生物炭對(duì)Pb2+和Cd2+的吸附特性研究 [J]. 北京大學(xué)學(xué)報(bào)(自然科學(xué)版), 2013, 49(6): 1075-1082.DAI J, LIU Y S. Adsorption of Pb2+ and Cd2+ onto biochars derived from pyrolysis of four kinds of biomasses [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2013, 49(6): 1075-1082(in Chinese).
[89]WANG S S, GAO B, ZIMMERMAN A R, et al. Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass [J]. Chemosphere, 2015, 134: 257-262. doi: 10.1016/j.chemosphere.2015.04.062 [90]LI H B, DONG X L, da SILVA E B, et al. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications [J]. Chemosphere, 2017, 178: 466-478. doi: 10.1016/j.chemosphere.2017.03.072 [91]張繼義, 蒲麗君, 李根. 秸稈生物碳質(zhì)吸附劑的制備及其吸附性能 [J]. 農(nóng)業(yè)工程學(xué)報(bào), 2011, 27(增刊2): 104-109.ZHANG J Y, PU L J, LI G. Preparation of biochar adsorbent from straw and its adsorption capability [J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(Sup 2): 104-109.
[92]林芳竹, 張珣. 生物炭在環(huán)境領(lǐng)域的研究與應(yīng)用進(jìn)展 [J]. 環(huán)境保護(hù)與循環(huán)經(jīng)濟(jì), 2019, 39(10): 17-20,70. doi: 10.3969/j.issn.1674-1021.2019.10.006LIN F Z, ZHANG X. Progress in research and application of biochar in the field of environment [J]. Environmental Protection and Circular Economy, 2019, 39(10): 17-20,70(in Chinese). doi: 10.3969/j.issn.1674-1021.2019.10.006
[93]蒲生彥, 上官李想, 劉世賓, 等. 生物炭及其復(fù)合材料在土壤污染修復(fù)中的應(yīng)用研究進(jìn)展 [J]. 生態(tài)環(huán)境學(xué)報(bào), 2019, 28(3): 629-635.PU S Y, SHANGGUAN L X, LIU S B, et al. A review of the application of biochar and its composites in soil remediation [J]. Ecology and Environmental Sciences, 2019, 28(3): 629-635(in Chinese).
[94]WANG B, LEE X, THENG B K G, et al. Biochar addition can reduce NOx gas emissions from a calcareous soil [J]. Environmental Pollutants and Bioavailability, 2019, 31(1): 38-48. doi: 10.1080/09542299.2018.1544035 [95]FANG B, LEE X, ZHANG J, et al. Impacts of straw biochar additions on agricultural soil quality and greenhouse gas fluxes in Karst area, Southwest China [J]. Soil Science and Plant Nutrition, 2016, 62(5/6): 526-533. [96]李陽(yáng), 李心清, 王兵, 等. 四種改良劑對(duì)酸性黃壤土壤酸度和肥力的影響 [J]. 地球與環(huán)境, 2016, 44(6): 683-690.LI Y, LIN X Q, WANG B, et al. Effects of four soil amendments on improving soil quality and acidity of yellow soils [J]. Earth and Environment, 2016, 44(6): 683-690(in Chinese).
[97]徐東昱, 周懷東, 高博. 生物炭吸附重金屬污染物的研究進(jìn)展 [J]. 中國(guó)水利水電科學(xué)研究院學(xué)報(bào), 2016, 14(1): 7-15.XU D Y, ZHOU H D, GAO B. Review of sorption of heavy metal contaminant on biochar [J]. Journal of China Institute of Water Resources and Hydropower Research, 2016, 14(1): 7-15(in Chinese).
[98]劉俊峰, 祝怡斌, 楊曉松, 等. 生物炭去除重金屬的研究進(jìn)展 [J]. 價(jià)值工程, 2015, 34(22): 149-152.LIU J F, ZHU Y B, YANG X S, et al. Research progress of dislodging heavy metals by biochar [J]. Value Engineering, 2015, 34(22): 149-152(in Chinese).
[99]QIN Y J, ZHU X L, SU Q, et al. Enhanced removal of ammonium from water by ball-milled biochar [J]. Environmental Geochemistry and Health, 2020, 42(6): 1579-1587. doi: 10.1007/s10653-019-00474-5 [100]莫官海, 謝水波, 曾濤濤, 等. 污泥基生物炭處理酸性含U(Ⅵ)廢水的效能與機(jī)理 [J]. 化工學(xué)報(bào), 2020, 71(5): 2352-2362.MO G H, XIE S B, ZENG T T, et al. The efficiency and mechanism of U(Ⅵ) removal from acidic wastewater by sewage sludge-derived biochar [J]. CIESC Journal, 2020, 71(5): 2352-2362(in Chinese).
[101]朱墨染. 農(nóng)業(yè)廢棄物改性生物炭對(duì)水中Fe2+和Mn2+去除的應(yīng)用研究[D]. 哈爾濱: 東北農(nóng)業(yè)大學(xué), 2017.ZHU M R. Study on the use of agricultural waste modified biochar removal of iron ions and manganese ions from water [D]. Harbin: Northeast Agricultural University, 2017.
[102]宋澤峰, 石曉倩, 劉卓, 等. 蘆葦生物炭的制備、表征及其吸附銅離子與雙酚A的性能 [J]. 環(huán)境化學(xué), 2020, 39(8): 2196-2205. doi: 10.7524/j.issn.0254-6108.2019052001SONG Z F, SHI X Q, LIU Z, et al. Synthesis and characterization of reed-based biochar and its adsorption properties for Cu2+ and bisphenol A (BPA) [J]. Environmental Chemistry, 2020, 39(8): 2196-2205(in Chinese). doi: 10.7524/j.issn.0254-6108.2019052001
[103]WANG D M, ROOT R A, CHOROVER J. Biochar-templated surface precipitation and inner-sphere complexation effectively removes arsenic from acid mine drainage [J]. Environmental Science and Pollution Research, 2021: 1-15. [104]常帥帥, 張學(xué)楊, 王洪波, 等. 木屑生物炭的制備及其對(duì)Pb2+的吸附特性研究 [J]. 生物質(zhì)化學(xué)工程, 2020, 54(3): 37-44. doi: 10.3969/j.issn.1673-5854.2020.03.006CHANG S S, ZHANG X Y, WANG H B, et al. Preparation of biochar from sawdust and it's adsorption property on Pb2+ [J]. Biomass Chemical Engineering, 2020, 54(3): 37-44(in Chinese). doi: 10.3969/j.issn.1673-5854.2020.03.006
[105]李瑞月, 陳德, 李戀卿, 等. 不同作物秸稈生物炭對(duì)溶液中Pb2+、Cd2+的吸附 [J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2015, 34(5): 1001-1008. doi: 10.11654/jaes.2015.05.025LI R Y, CHEN D, LI L Q, et al. Adsorption of Pb2+ and Cd2+ in aqueous solution by biochars derived from different crop residues [J]. Journal of Agro-Environment Science, 2015, 34(5): 1001-1008(in Chinese). doi: 10.11654/jaes.2015.05.025
[106]曹健華, 劉凌沁, 黃亞繼, 等. 原料種類和熱解溫度對(duì)生物炭吸附Cd2+的影響 [J]. 化工進(jìn)展, 2019, 38(9): 4183-4190.CAO J H, LIU L Q, HUANG Y J, et al. Effects of feedstock type and pyrolysis temperature on Cd2+ adsorption by biochar [J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4183-4190(in Chinese).
[107]廖衡妍. 生物炭和電石渣對(duì)礦區(qū)AMD污染的控制和修復(fù)作用[D]. 湘潭: 湖南科技大學(xué), 2019.LIAO H Y. Control and remediation of AMD pollution by biochar and carbide slag in mining area [D]. Xiangtan: Hunan University of Science and Technology, 2019.
[108]AO H T, CAO W, HONG Y X, et al. Adsorption of sulfate ion from water by zirconium oxide-modified biochar derived from pomelo peel [J]. Science of the Total Environment, 2020, 708: 135092. doi: 10.1016/j.scitotenv.2019.135092 [109]敖涵婷. 鋯改性柚子皮生物炭吸附硫酸根的性能及機(jī)理研究[D]. 泉州: 華僑大學(xué), 2020.AO H T. Performance and mechanism of sulfate adsorption byzirconium-modified pomelo peel biochar [D]. Quanzhou: Huaqiao University, 2020.
相關(guān)知識(shí)
生物技術(shù)引發(fā)健康浪潮.pptx
生物技術(shù)
生態(tài)系統(tǒng)健康研究進(jìn)展
林業(yè)技術(shù)的環(huán)境友好型產(chǎn)品研發(fā)
研究進(jìn)展
發(fā)展清潔能源技術(shù),17種礦產(chǎn)必不可少
飲用水中礦物質(zhì)的重要性
食品安全快速檢測(cè)技術(shù)的發(fā)展與應(yīng)用研究
植物蛋白肉研究進(jìn)展
對(duì)于有機(jī)農(nóng)業(yè)種植的土壤培肥技術(shù)探究.doc
網(wǎng)址: 利用生物炭技術(shù)處理酸性礦山廢水的研究進(jìn)展 http://m.u1s5d6.cn/newsview358658.html
推薦資訊
- 1發(fā)朋友圈對(duì)老公徹底失望的心情 12775
- 2BMI體重指數(shù)計(jì)算公式是什么 11235
- 3補(bǔ)腎吃什么 補(bǔ)腎最佳食物推薦 11199
- 4性生活姿勢(shì)有哪些 盤(pán)點(diǎn)夫妻性 10425
- 5BMI正常值范圍一般是多少? 10137
- 6在線基礎(chǔ)代謝率(BMR)計(jì)算 9652
- 7一邊做飯一邊躁狂怎么辦 9138
- 8從出汗看健康 出汗透露你的健 9063
- 9早上怎么喝水最健康? 8613
- 10五大原因危害女性健康 如何保 7826