首頁(yè) 資訊 食用植物酵素發(fā)酵過(guò)程中主要成分與功能研究進(jìn)展

食用植物酵素發(fā)酵過(guò)程中主要成分與功能研究進(jìn)展

來(lái)源:泰然健康網(wǎng) 時(shí)間:2024年12月17日 08:10

0 引言

大自然是人類(lèi)最重要的食物來(lái)源,近年來(lái),酵素已成為一種流行的保健食品,大多數(shù)酵素產(chǎn)品以水果為主要原料,如海棠、龍眼、蘋(píng)果梨、葡萄和藍(lán)莓等[1]。發(fā)酵是制作酵素過(guò)程中的核心環(huán)節(jié),也是人類(lèi)歷史上最常用的古老食品保存方法之一。在沒(méi)有任何冷藏或其他保存方法的情況下,傳統(tǒng)發(fā)酵可以作為一種替代方法來(lái)制作人們的主食[2]。雖然各種新的加工方法層出不窮,各種各樣的新型食品日益涌現(xiàn),但食品發(fā)酵在食品加工中仍然是不可替代的[3],并已發(fā)展成為最具特色的食品,如泡菜[4]、面包[5]和葡萄酒[6]。傳統(tǒng)的發(fā)酵飲料通常是通過(guò)自然發(fā)酵,一種使用野生微生物菌群,譬如細(xì)菌、酵母菌和霉菌單獨(dú)菌種作用方法,抑或是多種菌種共同作用的方法[7]。現(xiàn)有研究表明,發(fā)酵食品可以改善原始未發(fā)酵原料的營(yíng)養(yǎng)價(jià)值和功能特性[8],并且發(fā)酵在增強(qiáng)抗氧化活性方面起著關(guān)鍵作用,這表明微生物與抗氧化特性之間存在一些特定的關(guān)系[9????-14]。

食用植物酵素是一種植物功能性食品,由一種或多種新鮮蔬菜、水果、菌菇和藥食同源中草藥等為原料,經(jīng)多種微生物長(zhǎng)期發(fā)酵而制成的。近年來(lái)因其對(duì)健康存在潛在的益處而受到關(guān)注,相關(guān)的生產(chǎn)工藝在原料、發(fā)酵微生物和發(fā)酵條件方面取得了重大進(jìn)展。研究表明,食用植物酵素含有豐富的營(yíng)養(yǎng)物質(zhì)和生物活性物質(zhì),如礦物質(zhì)、氨基酸、多酚、有機(jī)酸和多糖。因此,許多研究都集中在食用植物酵素在一些疾病如高血糖、高脂血癥、肥胖癥和心血管疾病等方面的有益作用[15]。目前現(xiàn)有的研究報(bào)道主要針對(duì)某一方面進(jìn)行論述,但是很少有對(duì)食用植物酵素進(jìn)行全面歸納總結(jié)。因此,這篇綜述闡明了食用植物酵素的主要發(fā)酵方式、主要生物活性成分、主要功能作用和安全性方面相關(guān)的研究進(jìn)展,以期為食用植物酵素發(fā)酵過(guò)程中的主要功能作用研究提供理論依據(jù)。

1 食用植物酵素的主要發(fā)酵方式

食用植物酵素發(fā)酵一般采用自然發(fā)酵和人工接種發(fā)酵的發(fā)酵工藝。

1.1 自然發(fā)酵

食用植物酵素自然發(fā)酵是指以食用植物為原料,利用原料表面附著的微生物和原料內(nèi)部的微生物進(jìn)行發(fā)酵。經(jīng)研究發(fā)現(xiàn),自然發(fā)酵中常見(jiàn)的微生物有酵母菌、乳酸菌和醋酸菌3種,三者的共同作用可以形成獨(dú)特風(fēng)味的發(fā)酵制品[16]。在最近幾年中,由于高通量測(cè)序技術(shù)(HTS)具備高通量、高精確度和快速響應(yīng)的特點(diǎn),它在食品加工領(lǐng)域的微生物多樣性研究中得到了廣泛的應(yīng)用。它可以快速地檢測(cè)出樣品中存在的所有種類(lèi)微生物,并且能提供大量有關(guān)不同種或同一種內(nèi)各種微生物間相互作用的信息。眾多的科研人員已經(jīng)采用HTS技術(shù)對(duì)傳統(tǒng)發(fā)酵食品中的細(xì)菌和真菌多樣性進(jìn)行了深入分析。

張琪等[17]采用Illumina MiSeq高通量測(cè)序技術(shù)對(duì)沙棘酵素自然發(fā)酵過(guò)程中的細(xì)菌進(jìn)行了多樣性分析,揭示了細(xì)菌群落隨時(shí)間的推移而發(fā)生的動(dòng)態(tài)演變過(guò)程,不但為提高沙棘酵素產(chǎn)品質(zhì)量提供了理論基礎(chǔ),更為研制高效酵素發(fā)酵劑做好準(zhǔn)備。牛廣財(cái)?shù)萚18]采用Illumina MiSeq高通量測(cè)序技術(shù)對(duì)自然發(fā)酵過(guò)程中沙棘酵素真菌的多樣性及其結(jié)構(gòu)變化規(guī)律進(jìn)行了研究,為生產(chǎn)出更高品質(zhì)的沙棘酵素產(chǎn)品同時(shí)為未來(lái)的沙棘酵素產(chǎn)品提供理論支持。湯燦輝等[19]利用Illumina Miseq高通量測(cè)序技術(shù)分析發(fā)酵過(guò)程中細(xì)菌群落結(jié)構(gòu)的變化,加深對(duì)自然沙棘酵素發(fā)酵機(jī)制的認(rèn)識(shí),為篩選潛在價(jià)值的益生菌和實(shí)現(xiàn)精準(zhǔn)人工調(diào)控提供科學(xué)依據(jù)。黃娟等[20]采用Illumina高通量測(cè)序技術(shù)研究了嶺南桑葚果酒在兩個(gè)發(fā)酵周期中的細(xì)菌多樣性,通過(guò)對(duì)桑葚果酒樣本的菌種多樣性分析、優(yōu)質(zhì)菌株資源選育和桑葚果酒產(chǎn)業(yè)化生產(chǎn)等方面的研究,探討了新酒發(fā)酵轉(zhuǎn)化為陳年酒過(guò)程中菌種多樣性的變化和菌群結(jié)構(gòu)的變化。

1.2 人工接種發(fā)酵

食用植物酵素在自然發(fā)酵過(guò)程中發(fā)酵時(shí)間長(zhǎng),易受雜菌污染,發(fā)酵過(guò)程不易控制,最終致使酵素品質(zhì)下降。人工接種發(fā)酵具有發(fā)酵時(shí)間短,不易受雜菌污染,發(fā)酵過(guò)程可控等優(yōu)點(diǎn)。因此人工接種發(fā)酵為食用植物酵素發(fā)酵方式的更優(yōu)選擇。在已有的研究中,一般采用單一菌種或混合菌種進(jìn)行人工接種發(fā)酵。

目前發(fā)現(xiàn)最常用的發(fā)酵菌種有乳酸菌、酵母菌、霉菌以及多菌種混合發(fā)酵。李艷杰等[21]采用混合菌種發(fā)酵時(shí),要考慮菌種的種類(lèi)、接種量、接種時(shí)期,以及對(duì)發(fā)酵液的影響。由于酵素發(fā)酵周期長(zhǎng)、菌種多、組分復(fù)雜,所以在自然發(fā)酵過(guò)程研究中存在一定難度[22]。

在人工接種發(fā)酵中,乳酸菌(Lactic acid bacteria, LAB)是應(yīng)用最廣泛的菌種之一,其發(fā)酵過(guò)程中的主要產(chǎn)物是乳酸。在食品發(fā)酵中常見(jiàn)的屬一般包括乳桿菌屬、乳球菌屬、腸球菌屬、片球菌屬和明串珠菌屬等[23]。其中乳酸菌、乳球菌、鏈球菌和腸球菌等為乳酸菌中最常用的菌種[24]。另一個(gè)重要的群體是醋酸菌,它可以利用原料中的糖生產(chǎn)醋產(chǎn)品,如蘋(píng)果醋和傳統(tǒng)醋[25]。芽孢桿菌,如枯草芽孢桿菌是第三種重要的發(fā)酵細(xì)菌,可以利用豆類(lèi)或塊莖作為底物生產(chǎn)納豆和醬油[26]。此外,兩歧雙歧桿菌等放線(xiàn)菌門(mén)的細(xì)菌也有助于生產(chǎn)酸菜和泡菜等發(fā)酵食品[27]。酵母在食品工業(yè)中發(fā)揮著至關(guān)重要的作用,它提供的酶能產(chǎn)生理想的生化反應(yīng),有利于面包、啤酒、葡萄酒等產(chǎn)品的形成[28]。此外,霉菌也是重要的微生物,如米曲霉可用于醬油的生產(chǎn)[29]。然而,與細(xì)菌和酵母相比,霉菌在發(fā)酵食品中的應(yīng)用相對(duì)有限,因?yàn)樾枰嗟目刂坪捅O(jiān)測(cè),以確保沒(méi)有有害毒素的產(chǎn)生[30]。幾種植物果實(shí)人工接種發(fā)酵制成酵素的成分及最佳工藝條件如表1所示。

表1 幾種植物果實(shí)酵素制品的成分及最佳工藝條件 酵素
名稱(chēng) 主要原料 發(fā)酵菌種 最佳工藝條件 文獻(xiàn) 藍(lán)莓
酵素 藍(lán)莓 酵母菌(Saccharomyces)
植物乳桿菌
(Lactobacillus plantarum)
干酪乳桿菌(Lactobacillus casei) 最佳接種量:酵母菌0.1%、植物乳桿菌2%、干酪乳桿菌0.47%,發(fā)酵時(shí)間:41.5 h,發(fā)酵溫度:31℃,可溶性固形物含量:12°Bx,料液比:1:5(g:mL),pH 3.14,酒精度:0.2%vol,總酚含量:3.14 mg/mL,花色苷含量:26.06 mg/mL,乳酸菌活菌數(shù):1.01×107 CFU/mL,SOD酶活力:103.01 U/mL [31] 蓮霧
酵素 蓮霧 乳酸菌(Lactic acid bacteria)
酵母菌(Saccharomyces) 最佳接種量:乳酸菌:酵母菌為1:2,發(fā)酵時(shí)間:48 h,發(fā)酵溫度:31℃,蔗糖添加量:6%,pH值適中,SOD酶活力:(181.67±5.31)U/mL [32] 桑葚
酵素 桑葚 植物乳桿菌
(Lactobacillus plantarum) 最佳接種量:植物乳桿菌25%,發(fā)酵時(shí)間:40 h,發(fā)酵溫度:32℃,總酚含量:(43.48±0.67)μg/mL,可溶性固體物含量:5.36%,pH 4.08±0.01 [33] 牛蒡根果
蔬復(fù)合酵素 牛蒡根、山藥、
火龍果、葡萄、
蘋(píng)果、檸檬等 米曲霉(Aspergillus oryzae) 最佳接種量:米曲霉菌2%,發(fā)酵時(shí)間:50 d,發(fā)酵溫度:25℃,米曲霉菌接種量:2%,紫皮葡萄添加量:6% [34] 沙棘酵素 沙棘 釀酒酵母
(Saccharomyces cerevisiae)
異常漢遜酵母
(Hansenula anomala)
植物乳桿菌
(Lactobacillus plantarum) 最佳接種量:釀酒酵母、異常漢遜酵母與植物乳植物桿菌總接種量為10.25%(其中菌種比例分別為1:1.6:2.6),pH 2.23,總酸含量:78.60 mg/mL,可溶性固形物含量:2.68°Bx,乙醇含量:0.05 g/100mL,總酚含量:18.85 mg/mL,總黃酮含量:12.49 mg/mL,VC含量:6.48 mg/mL,多糖含量:22.49 mg/mL,SOD酶活力:2206.67 U/mL,還原力(OD700值):2.65 [35] 刺梨果渣
酵素 刺梨果渣 酵母菌(Saccharomyces)
植物乳桿菌
(Lactobacillus plantarum) 酵母菌發(fā)酵階段:最佳接種量:酵母菌0.21%,發(fā)酵時(shí)間:24.5 h,發(fā)酵溫度:24.7℃,糖添加量:5%,SOD酶活力:267.64 U/g,酵母菌活菌數(shù):1.41×108 CFU/g乳酸菌發(fā)酵階段:發(fā)酵時(shí)間:16 h,最佳接種量:乳酸菌2%,發(fā)酵溫度:35℃,SOD酶活力:275.24 U/g,乳酸菌活菌數(shù):1.97×108 CFU/g [36] 甘孜梨果仙人掌果酵素 甘孜梨果
仙人掌果 酵母菌(Saccharomyces)
乳酸菌(Lactic acid bacteria) 最佳接種量:酵母菌和乳酸菌混合菌種的接種量5%,發(fā)酵時(shí)間:4 d,發(fā)酵溫度:34℃,糖的添加量:25%,SOD酶活力:148.24 U/mL,麥芽糊精添加量:20%,DPPH自由基清除率:40.59%,羥自由基清除率:26.23%,鐵離子還原力:0.1799 [37] 雪花梨酵素 雪花梨 酵母菌(Saccharomyces)
植物乳桿菌
(Lactobacillus plantarum) 一步發(fā)酵:最佳接種量:酵母菌0.14%,發(fā)酵時(shí)間:24 h,發(fā)酵溫度:26℃,發(fā)酵液起始pH 4.5,料液比:1:1,糖添加量:13%
二步發(fā)酵:最佳接種量:植物乳桿菌1.50%,發(fā)酵時(shí)間:36 h,發(fā)酵溫度:39℃,總酚含量:32.32 μg/mL,蛋白酶活力:45.15 U/mL,SOD酶活力:1140 U/mL,可滴定酸:4.43 g/L,pH 3.49,可溶性固形物含量:11.3 Brix% [38] 哈密瓜酵素 哈密瓜 酵母菌(Saccharomyces)
乳酸菌(Lactic acid bacteria) 最佳接種量:酵母菌0.02%,乳酸菌0.2%,發(fā)酵時(shí)間:27 h,發(fā)酵溫度:30℃以下,蔗糖添加量:哈密瓜量的10%,pH 4.5~5,羥自由基清除率:>85%,SOD酶活力:>110 U/mL(110000 U/L) [39] 木棗果蔬
酵素 木棗 酵母菌(Saccharomyces)
植物乳桿菌
(Lactobacillus plantarum) 最佳接種量:植物乳桿菌4%,發(fā)酵時(shí)間:2 d,發(fā)酵溫度:38℃,SOD酶活力:278.64 U/mL [40] 紅陽(yáng)獼猴桃
酵素 紅陽(yáng)獼猴桃 釀酒酵母
(Saccharomyces cerevisiae)
乳酸菌(Lactobacillus bulgaricus) 最佳接種量:酵母菌2%,乳酸菌2%,酶添加量果膠酶0.5%,纖維素酶2%,發(fā)酵時(shí)間:35 d,發(fā)酵溫度:36℃,初始糖添加量:20%,料液比:1:1.3 (g/mL),羥基自由基清除率:增加8.69%,DPPH清除率:增加11.89%,ABTS+清除率:增加36.57% [41] 北五味子麥芽酵素 北五味子、
大麥芽 植物乳桿菌
(Lactobacillus plantarum) 最佳接種量:植物乳桿菌1.5%,北五味子和麥芽的原料比:2:1(g:g),發(fā)酵時(shí)間:3 d,發(fā)酵溫度:41℃,SOD酶活力:3464.80 U/mL,超氧陰離子自由基清除能力:26.03%,羥自由基清除能力:97.25%,DPPH自由基清除能力:89.10%,ABTS+自由基清除能力:0.6137 mmol/L [42]

2 食用植物酵素的主要活性成分

在當(dāng)代社會(huì)中,植物性食物的地位舉足輕重。隨著人們對(duì)健康的日益重視,越來(lái)越多的人被植物性食品所吸引[43]。植物性食品富含多種生物活性物質(zhì),如多糖、多酚、維生素、γ-氨基丁酸和胞外多糖[44]等。發(fā)酵不但可以提高食品的安全性還可以延長(zhǎng)食品保質(zhì)期[45]。有研究結(jié)果表明,與非發(fā)酵食品相比,發(fā)酵植物性食品不僅提供令人愉悅的風(fēng)味和質(zhì)地,而且在預(yù)防慢性疾病方面也顯示出更大的潛力[46]。這些益處主要?dú)w因于微生物在發(fā)酵過(guò)程中對(duì)營(yíng)養(yǎng)成分的影響[47]。

2.1 多糖

植物性食物中的多糖是一種重要而廣泛的具有對(duì)人類(lèi)健康至關(guān)重要的多種結(jié)構(gòu)和生物活性的分布類(lèi)營(yíng)養(yǎng)素[48]。此前的研究主要集中在闡明植物多糖的內(nèi)在結(jié)構(gòu)及其功能特性[49]。然而,近年來(lái)隨著研究人員深入研究,發(fā)酵植物性食品的領(lǐng)域愈發(fā)廣泛,人們?cè)絹?lái)越認(rèn)識(shí)到植物生長(zhǎng)過(guò)程中和微生物發(fā)酵過(guò)程中探討多糖變化的意義[50]。在植物中,多糖具有能量?jī)?chǔ)存、支撐結(jié)構(gòu)和細(xì)胞壁的形成等方面功能。植物中發(fā)現(xiàn)的多糖主要有纖維素、阿拉伯木聚糖、果膠和淀粉等[51],這些多糖可分為貯能多糖和結(jié)構(gòu)多糖[52]。

現(xiàn)有文獻(xiàn)表明天然產(chǎn)物資源具有化學(xué)結(jié)構(gòu)多樣、作用靶點(diǎn)多和毒性低等特點(diǎn),在延緩衰老和預(yù)防衰老相關(guān)疾病方面具有巨大潛力;其中,植物多糖的作用尤為突出[53?-55]。

2.2 多酚

食用植物酵素中的多酚類(lèi)化合物不僅來(lái)自于植物原料本身,還來(lái)自于發(fā)酵過(guò)程中酵母菌、醋酸菌、乳酸菌等微生物的代謝產(chǎn)物。這些代謝產(chǎn)物包括黃酮類(lèi)、單寧類(lèi)、酚酸類(lèi)和花色苷類(lèi)等[56]。

在常見(jiàn)的蔬菜、水果和中草藥中,多酚類(lèi)化合物是普遍存在的。這些多酚化合物的分子構(gòu)造包含了多種酚羥基,如黃酮、類(lèi)黃酮、酚酸和花色苷等。多酚類(lèi)化合物具有抗氧化作用、抗菌消炎活性、抗癌活性、抗疲勞作用以及抗突變等生物活性。多項(xiàng)研究證實(shí),人體能夠高效地吸收多酚類(lèi)化合物,其中,腸道和肝臟是這些物質(zhì)的主要代謝中心。此外,多酚類(lèi)物質(zhì)還具有抗氧化、抗突變作用以及抗腫瘤活性。在這些器官里,多酚類(lèi)化合物會(huì)經(jīng)歷甲基化、糖基化和硫酸化等化學(xué)反應(yīng),然后通過(guò)膽汁重新進(jìn)入腸道。因此,多酚類(lèi)物質(zhì)能夠被胃腸道直接吸收。然而,不同種類(lèi)的多酚在人體內(nèi)的分解速率是有區(qū)別的,一旦進(jìn)入人體血液,其平均半衰期通常超過(guò)3.3 h。從這些數(shù)據(jù)中,可以得出結(jié)論:多酚的攝入量與身體的吸收周期在促進(jìn)人體健康方面有著非常緊密的關(guān)聯(lián)[57]。

2.3 維生素

水果和蔬菜中盡管富含維生素C,但其維生素B的含量相對(duì)較低。作為一種輔助酶,維生素B在人體的新陳代謝過(guò)程中發(fā)揮著不可或缺的角色。因此,人們?cè)絹?lái)越重視對(duì)其進(jìn)行提取和加工利用。根據(jù)目前的科學(xué)研究,發(fā)酵過(guò)程有助于B族維生素的生成[58]。RATCHADAPORN等[59]用嗜酸乳桿菌和干酪桿菌發(fā)酵的腰果蘋(píng)果汁的B族維生素含量高于其他益生菌發(fā)酵的腰果蘋(píng)果汁,其中嗜酸乳桿菌和干酪菌發(fā)酵的B族維生素含量分別增加約19.25%和23.11%。SZUTOWSKA等[60]對(duì)羽衣甘藍(lán)進(jìn)行了發(fā)酵,過(guò)程中維生素C的含量下降的這種情況可能與其不穩(wěn)定的特性和對(duì)氧化分解的高度依賴(lài)性有關(guān),或者可能是在發(fā)酵階段被乳酸菌轉(zhuǎn)化和利用。

3 食用植物酵素的主要功能作用

新鮮植物經(jīng)過(guò)發(fā)酵后,具有多種有益于人體健康的功能活性,如在降血脂、抗氧化、降血糖、降血壓、改善腸道環(huán)境和提高免疫力等方面具有一定的預(yù)防治療效果[61]。

3.1 具有降低血脂的作用

食用植物酵素能夠加速身體的新陳代謝過(guò)程,這包括脂肪的代謝。當(dāng)脂肪代謝加快時(shí),血液中的脂質(zhì)含量就會(huì)相應(yīng)減少,從而改善血脂情況。商曰玲[62]通過(guò)對(duì)特種沙棘酵素活性成分進(jìn)行測(cè)定分析后發(fā)現(xiàn),這種酵素對(duì)沙棘的營(yíng)養(yǎng)成分和活性功能都能得到有效地保留,尤其在降脂方面有卓越的表現(xiàn),其作用甚至超出了沙棘本身。在發(fā)酵原料濃度相近的條件下,酵素中的生物活性成分含量與發(fā)酵原料的特性有關(guān)。降脂試驗(yàn)表明,混合沙棘酵素降脂效果顯著,特別是加入玫瑰花后的混合沙棘酵素,其降脂效果更為明顯。袁斌[63]在實(shí)驗(yàn)中發(fā)現(xiàn),利用不同種類(lèi)的果蔬酵素對(duì)營(yíng)養(yǎng)性肥胖小鼠進(jìn)行灌胃試驗(yàn)后,發(fā)現(xiàn)果蔬酵素對(duì)減肥降脂有一定效果,但不同種類(lèi)果蔬酵素的作用效果有所差異。因此,可以考慮將果蔬酵素作為輔助減肥的一種方式。HUANG等[64]實(shí)驗(yàn)結(jié)果表明,植物乳桿菌K68和果蔬發(fā)酵(FVF)對(duì)高脂肪高果糖飲食(HFFD)引起的大鼠體重增加和血脂異常均有預(yù)防作用。因此,K68和FVF可能具有預(yù)防HFFD誘導(dǎo)的高血糖、高胰島素血癥和高脂血癥的特性。

3.2 抗氧化作用

食用植物酵素能夠顯著增強(qiáng)機(jī)體的抗氧化能力,降低自由基的產(chǎn)生和積累,從而減輕氧化應(yīng)激對(duì)機(jī)體的損害。王輝[65]經(jīng)過(guò)對(duì)青梅酵素的抗氧化活性、酶活力和抑菌作用等方面的研究,發(fā)現(xiàn)青梅酵素具有較強(qiáng)的抗氧化活性和酶活力。王虎玄[66]則通過(guò)對(duì)比蘋(píng)果酵素和未發(fā)酵蘋(píng)果汁的羥基自由基清除率、還原力以及總酚含量,發(fā)現(xiàn)蘋(píng)果酵素具有良好的抗氧化性能。王迪[67]探究了在蕓豆酵素發(fā)酵過(guò)程中代謝產(chǎn)物含量以及抗氧化能力的動(dòng)態(tài)變化。研究發(fā)現(xiàn),通過(guò)代謝產(chǎn)物含量的變化,可以清晰地觀(guān)察到發(fā)酵過(guò)程的周期性以及發(fā)酵液中生物活性物質(zhì)的累積情況。

3.3 降低心血管疾病作用

食用植物酵素與心血管疾病之間存在積極的關(guān)系。植物酵素中的多種活性成分對(duì)心血管健康具有潛在的益處,可以降低心血管疾病風(fēng)險(xiǎn)、預(yù)防心腦血管疾病等。趙迪等[68]通過(guò)對(duì)大鼠進(jìn)行實(shí)驗(yàn),發(fā)現(xiàn)決明子菊花的本草酵素能夠顯著降低自發(fā)性高血壓大鼠的血壓,而對(duì)正常大鼠的血壓無(wú)明顯影響。這表明決明子菊花本草酵素對(duì)高血壓有良好的治療作用,能有效輔助降低血壓。AHRéN等[69]通過(guò)對(duì)動(dòng)物的實(shí)驗(yàn)探究,評(píng)估了結(jié)合藍(lán)莓和具有產(chǎn)生單寧酶能力的益生菌植物乳桿菌DSM 15313的兩種益生菌產(chǎn)品對(duì)高血壓有一定的預(yù)防作用,利用植物乳桿菌DSM 15313進(jìn)行發(fā)酵處理的藍(lán)莓對(duì)大鼠顯示出有降低高血壓的作用,這有助于降低心血管疾病的患病風(fēng)險(xiǎn)。BLANCA等[70]研究表明,飲用發(fā)酵橙汁能顯著提升谷胱甘肽和尿酸水平、增強(qiáng)抗氧化酶的活性、提高膽紅素含量以及血漿的抗氧化能力,從而優(yōu)化血脂狀況,減少氧化形式的低密度脂蛋白,并在大鼠中保持白介素-6(IL-6)和C反應(yīng)蛋白的水平,進(jìn)一步表明在健康小鼠體內(nèi),發(fā)酵橙汁對(duì)于心血管疾病的潛在危險(xiǎn)因素具有更強(qiáng)的防護(hù)效果。

4 食用植物酵素面臨風(fēng)險(xiǎn)與挑戰(zhàn)

盡管食用植物酵素在營(yíng)養(yǎng)和健康方面有其優(yōu)點(diǎn),但也不可忽視其可能帶來(lái)的一些安全隱患。制作過(guò)程中使用了大量植物原料,這導(dǎo)致由于原料和加工環(huán)境的差異,微生物種類(lèi)和數(shù)量各不相同,使得酵素的發(fā)酵過(guò)程變得復(fù)雜且難以精確控制[71]。在含糖量高的條件下,某些微生物如酵母和乳酸菌,會(huì)快速增長(zhǎng),成為主導(dǎo)菌群,并為產(chǎn)品賦予獨(dú)特的風(fēng)味特性[72]。采用傳統(tǒng)方式生產(chǎn)酵素時(shí),產(chǎn)品容易遭受病原體污染,導(dǎo)致安全性低、品質(zhì)不穩(wěn)定,且難于規(guī)?;a(chǎn)。深入了解酵素微生物的構(gòu)造與成分對(duì)解決這些問(wèn)題至關(guān)重要[73]。相比之下,采用人工接種技術(shù)具有顯著優(yōu)點(diǎn),它能有效縮減發(fā)酵所需時(shí)間,提高生產(chǎn)效率。通過(guò)選用單一菌種進(jìn)行發(fā)酵,可以有效避免其他微生物的污染,確保了發(fā)酵過(guò)程的純凈性。此外,人工接種技術(shù)還有助于產(chǎn)品質(zhì)量的標(biāo)準(zhǔn)化和規(guī)范化,確保了其穩(wěn)定性[74]。

人工接種發(fā)酵是廣泛應(yīng)用于提高產(chǎn)品質(zhì)量、精確控制發(fā)酵工藝的一項(xiàng)重要技術(shù),但操作不當(dāng)或管理不當(dāng),可能會(huì)帶來(lái)風(fēng)險(xiǎn),也會(huì)帶來(lái)問(wèn)題。一方面是發(fā)酵工藝要靠具體菌種的選擇。如果所選菌種的活性不高或被污染,則會(huì)對(duì)正常的發(fā)酵過(guò)程造成干擾,從而對(duì)產(chǎn)品質(zhì)量造成影響,或使發(fā)酵作業(yè)無(wú)法正常進(jìn)行。所以在選擇菌種的時(shí)候一定要保證它的來(lái)源可靠,純凈度高,而且是適合食物發(fā)酵的種類(lèi)。另一方面,溫度、時(shí)間、濕度、pH值等關(guān)鍵參數(shù)必須在整個(gè)發(fā)酵過(guò)程中嚴(yán)格監(jiān)測(cè)。不適當(dāng)?shù)沫h(huán)境條件可能會(huì)抑制菌種生長(zhǎng)或產(chǎn)生代謝物,對(duì)產(chǎn)品質(zhì)量和安全性都不利。發(fā)酵條件必須嚴(yán)格控制,才能保證人工接種發(fā)酵過(guò)程的順利進(jìn)行。此外,人工接種發(fā)酵過(guò)程也面臨著環(huán)境污染的風(fēng)險(xiǎn),可能會(huì)引入細(xì)菌、霉菌等污染源,如無(wú)菌環(huán)境維持不下去或消毒不到位等。這些外來(lái)微生物既可能搶奪營(yíng)養(yǎng)成分,又可能對(duì)產(chǎn)品質(zhì)量安全造成有害物質(zhì)的釋放和威脅。因此,為了保證人工接種發(fā)酵過(guò)程的成功,選對(duì)菌種、控制發(fā)酵條件、防止環(huán)境污染是必不可少的,必須以嚴(yán)格的操作規(guī)范和管理為基礎(chǔ),才能充分利用其優(yōu)勢(shì),提高產(chǎn)品的質(zhì)量和穩(wěn)定性。

5 展望

作為一種含有特定生物活性成分的產(chǎn)品,食用植物酵素在促進(jìn)人體健康方面的潛力一直為人們所津津樂(lè)道。食用植物酵素的前景從目前的研究和發(fā)展趨勢(shì)來(lái)看是十分可觀(guān)的。對(duì)于食用植物酵素的研究,今后需要重點(diǎn)關(guān)注以下4個(gè)方面:(1)在食用植物酵素的制備過(guò)程中,首先要保證原材料的品質(zhì),其次應(yīng)當(dāng)選用玻璃材質(zhì)或食品級(jí)塑料瓶,確保發(fā)酵容器無(wú)油無(wú)污染,最后發(fā)酵環(huán)境要避免陽(yáng)光直射和過(guò)于潮濕,以防止酵素變質(zhì);(2)在食用植物酵素的發(fā)酵過(guò)程中,無(wú)論是自然發(fā)酵還是人工接種發(fā)酵,微生物污染是最需要注意的問(wèn)題,純化發(fā)酵菌種能夠避免受到雜菌污染,從而使得純化菌種能夠更有效地應(yīng)用于食用植物的發(fā)酵過(guò)程;(3)食用植物酵素目前主要在保鮮、改善口感等方面進(jìn)行探索,隨著加工工藝的不斷創(chuàng)新和消費(fèi)者需求的不斷變化,食用植物酵素在食品工業(yè)中的應(yīng)用將更加廣泛;(4)在食用植物酵素的機(jī)制研究上更多地向人類(lèi)健康傾斜,通過(guò)對(duì)食用植物酵素代謝過(guò)程及在人體內(nèi)的作用機(jī)理的深入研究,為其健康功效的評(píng)估提供理論基礎(chǔ),從而為產(chǎn)品的研發(fā)及市場(chǎng)推廣提供更為科學(xué)的依據(jù)。

綜上所述,作為前景廣闊、潛力巨大的健康食品,食用植物酵素今后將繼續(xù)扮演其重要角色,期待在未來(lái)能夠看到更多食用植物酵素產(chǎn)品的創(chuàng)新及研究成果。

{{custom_citation.pmid}30}

=2" class="main_content_center_left_zhengwen_bao_erji_title main_content_center_left_one_title" style="font-size: 16px;">{{custom_citation.pmid}26}{{custom_citation.pmid}13}[1]LI Y Z

,

LI P

,

ZHANG Y

, et al. Utilization of Gynostemma pentaphyllum and Houttuynia cordata medicinal plants to make Jiaosu: a healthy food[J]. Cyta-journal of food, 2022, 20(1):143-148.

{{custom_citation.pmid}01}https://doi.org/{{custom_citation.url}87}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}63}{{custom_citation.url}49}本文引用 [{{custom_citation.url}90}]摘要{{custom_citation.url}88}[2]HOLZAPFEL W H

. Appropriate starter culture technologies for small-scale fermentation in developing countries[J]. International journal of food microbiology, 2002, 75(3):197-212.

Modern food biotechnology has moved a long way since ancient times of empirical food fermentations. Preservation and safeguarding of food are, however, still major objectives of fermentation. In addition, other aspects, such as wholesomeness, acceptability and overall quality, have become increasingly important and valued features to consumers even in developing countries where old traditions and cultural particularities in food fermentations are generally well maintained. Due to limitations in infrastructure and existing low technologies, rural areas in most developing countries have not been able to keep abreast of global developments toward industrialisation. At the same time, fermented foods play a major role in the diet of numerous regions in Africa and Asia. In many traditional approaches, the advantages of some form of inoculation of a new batch, e.g. by back-slopping or the repeated use of the same container (e.g. a calabash) is appreciated and generally practised. Still, the benefits of small-scale starter culture application as a means of improved hygiene, safety and quality control, in support of HACCP approaches, are not yet realised in small-scale fermentation operations. Approaches and considerations for the selection of pure cultures for small-scale, low-tech applications may differ in some respects from the large-scale industrial approaches practised since 100 years. Selection criteria should take account of the substrate, technical properties of the strain, food safety requirements and quality expectations. Lack of experience in the application of starter cultures in small-scale operations and under rural conditions presents a major obstacle but also an exciting challenge to food microbiologist and technologist. Culture preservation, maintenance and distribution demand special logistic and economic considerations. Quality, safety and acceptability of traditional fermented foods may be significantly improved through the use of starter cultures selected on the basis of multifunctional considerations, also taking into account the probiotic concept and possibilities offered for improved health benefits.

{{custom_citation.url}76}https://doi.org/{{custom_citation.url}52}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}38}{{custom_citation.url}14}本文引用 [{{custom_ref.citedCount>0}65}]摘要{{custom_ref.citedCount>0}53}[3]OLUWAFEMI A A

,

EUGENIE K

,

FIDELE T

, et al. Differential metabolic signatures in naturally and lactic acid bacteria (LAB) fermented ting (a Southern African food) with different tannin content, as revealed by gas chromatography mass spectrometry (GC-MS)-based metabolomics[J]. Food research international, 2019, 121:326-335.

Fermented whole grain (WG) sorghum food products including WG-ting can be obtained from different sample sources and fermentation conditions, leading subsequently to variations in the molecular composition of the products. There is however, a lack of detailed understanding and description of differential molecular profiles of these food products. Thus, the current study is a nontargeted gas chromatography-mass spectrometry (GC-MS)-based metabolomics approach to descriptively elucidate metabolic profiles of two WG-sorghum types [high tannin (HT) and low tannin (LT)] and their derived WG-ting products obtained via fermentation. Metabolites were extracted with 80% aqueous methanol and analyzed on a gas chromatography high resolution time of flight mass spectrometry (GC-HRTOF-MS) system. Chemometric methods such as principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA) were applied to mine the generated data. Our results showed that tannin contents influenced the composition of the raw sorghum and derived WG-ting samples. Metabolite signatures that differentiated raw HT- and LT-sorghum included cyclic compounds, pesticides, 2,4-di-tert-butylphenol, fatty acid esters, and sugar derivatives. Furthermore, fermentation of the HT- and LT-sorghum into WG-ting led to an increase in the levels of fatty acids, fatty acid esters and some other compounds which are vital from a dietary and health context. Equally observed were reduction of some phenols, cyclic compounds, a pesticide and ketone. Thus, the results demonstrated that the inherent metabolic composition of raw sorghum would lead to differential metabolic changes in the fermented products such as WG-ting, with subsequent dietary and health implications. Fermenting ting with Lactobacillus fermentum FUA 3321 was most desirable as relevant metabolites were observed in both HT- and LT-ting samples. Furthermore, the study highlights the applicability of GC-MS metabolomics in understanding WG-ting fermentation.Copyright ? 2019 Elsevier Ltd. All rights reserved.

{{custom_ref.citedCount>0}41}https://doi.org/{{custom_ref.citedCount>0}27}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount>0}03}{{custom_citationIndex}89}0}8}=={{custom_citationIndex}77}.length-1) || ({{custom_citationIndex}66} && {{custom_citationIndex}55}!='')" class="mag_main_zhengwen_left_div_ckwx_table_benwenyiny mag_rich_ref_abstract">本文引用 [{{custom_citationIndex}00}]摘要{{custom_ref.citationList}98}[4]

徐亞洲, 熊濤, 謝書(shū)虎, 等. 食竇魏斯氏菌NCU034005與檸檬明串珠菌NCU027003對(duì)泡菜代謝物及風(fēng)味的影響[J]. 食品與機(jī)械, 2020, 36(5):7-14.

{{custom_ref.citationList}86}https://doi.org/{{custom_ref.citationList}62}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}48}{{custom_ref.citationList}24}本文引用 [{{custom_ref.id}75}]摘要{{custom_ref.id}63}[5]JOANA P

,

BEATRIZ A

,

LAURA R

, et al. Analysis of volatile compounds in gluten-free bread crusts with an optimised and validated SPME-GC/QTOF methodology[J]. Food research international, 2018, 106:686-695.

The aroma of bread crust, as one of the first characteristics perceived, is essential for bread acceptance. However, gluten-free bread crusts exhibit weak aroma. A SPME-GC/QTOF methodology was optimised with PCA and RSM and validated for the quantification of 44 volatile compounds in bread crust, extracting 0.75?g of crust at 60?°C for 51?min. LODs ranged between 3.60 and 1760?μg?Kg, all the R were higher than 0.99 and %RSD for precision and %Er for accuracy were lower than 9% and 12%, respectively. A commercial wheat bread crust was quantified, and furfural was the most abundant compound. Bread crusts of wheat starch and of japonica rice, basmati rice and teff flours were also quantified. Teff flour and wheat starch crusts were very suitable for improving gluten-free bread crust aroma, due to their similar content in 2-acetyl-1-pyrroline and 4-hydroxy-2,5-dimethyl-3(2H)-furanone compared to wheat flour crust and also for their high content in pyrazines.Copyright ? 2018 Elsevier Ltd. All rights reserved.

{{custom_ref.id}51}https://doi.org/{{custom_ref.id}37}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.id}13}{{custom_ref.citedCount}99}本文引用 [{{custom_ref.citedCount}40}]摘要{{custom_ref.citedCount}38}[6]SUMBY K M

,

BARTLE L

,

GRBIN P R

, et al. Measures to improve wine malolactic fermentation[J]. Applied microbiology and biotechnology, 2019, 103(5):2033-2051.

This review focuses on the considerable amount of research that has been directed towards the improvement of efficiency and reliability of malolactic fermentation (MLF), which is important in winemaking. From this large body of work, it is clear that reliable MLF is essential for process efficiency and prevention of spoilage in the final product. Impediments to successful MLF in wine, the impact of grape and wine ecology and how this may affect MLF outcome are discussed. Further focus is given to how MLF success may be enhanced, via alternative inoculation strategies, MLF progress sensing technologies and the use of different bacterial species. An update of how this information may be used to enhance and improve sensory outcomes through metabolite production during MLF and suggestions for future research priorities for the field are also provided.

{{custom_ref.citedCount}26}https://doi.org/{{custom_ref.citedCount}02}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}88}{{custom_citation.annotation}64}本文引用 [{{custom_citation.annotation}15}]摘要{{custom_citation.annotation}03}[7]CHENG A W

,

YAN H Q

,

HAN C J

, et al. Polyphenols from blueberries modulate inflammation cytokines in LPS-induced RAW264.7 macrophages[J]. International journal of biological macromoleculesis, 2014, 69:382-387.

{{custom_fund}91}https://doi.org/{{custom_fund}77}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_fund}53}{{custom_fund}39}本文引用 [{{custom_citation.annotation}0}]摘要{{custom_citation.annotation}8}[8]RAMOS C L

,

DE ALMEIDA E G

,

PEREIRA G V

, et al. Determination of dynamic characteristics of microbiota in a fermented beverage produced by Brazilian Amerindians using culture-dependent and culture-independent methods[J]. International journal of food microbiology, 2010, 140:225-231.

Cauim is a fermented beverages prepared by Tapirapé Amerindians in Brazil from substrates such as cassava, rice, peanuts, pumpkin, cotton seed and maize. Here we study the microorganisms associated with peanut and rice fermentation using a combination of culture-dependent and -independent methods. The bacterial population varied from 7.4 to 8.4 log CFU/ml. The yeast population varied from 4.0 to 6.6 log CFU/ml. A total of 297 bacteria and yeasts strains were isolated during fermentation, with 198 bacteria and 99 yeast. The Lactobacillus genus was dominant throughout fermentation. Bacteria and yeast community dynamics during the fermentation process were monitored by PCR-DGGE analysis. Both culture-dependent and -independent methods indicated that the bacterial species L. plantarum, L. fermentum, L. paracasei and L. brevis as well as the yeast species P. guilliermondii, K. lactis, Candida sp, R. toruloides and Saccharomyces cerevisiae, were dominant during fermentation. Multivariate analysis of microorganisms during beverage fermentation showed that the microbial community changed during the fermentation process.Copyright 2010 Elsevier B.V. All rights reserved.

{{custom_citation.annotation}6}https://doi.org/{{custom_citation.annotation}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}8}{{custom_ref.citationList}4}本文引用 [{{custom_citation.content}5}]摘要{{custom_citation.doi}3}[9]MARSHALL A A

,

BARBARA F

,

HANS B

, et al. Nutritional value of african yambean (Sphenostylis stenocarpa L.): improvement by lactic acid fermentation[J]. Journal of the science of food and agriculture, 2005, 85(6):963-970.

{{custom_citation.doi}1}https://doi.org/{{custom_citation.doi}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}3}{{custom_citation.doi}9}本文引用 [{{custom_citation.doi}0}]摘要{{custom_citation.pmid}8}[10]LEE B J

,

KIM J S

,

KANG Y M

, et al. Antioxidant activity and γ-aminobutyric acid (GABA) content in sea tangle fermented by Lactobacillus brevis BJ20 isolated from traditional fermented foods[J]. Food chemistry, 2010, 122(1):271-276.

{{custom_citation.pmid}6}https://doi.org/{{custom_citation.pmid}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}8}{{custom_citation.pmid}4}本文引用 [{{custom_citation.pmid}5}]摘要{{custom_citation.pmid}3}[11]CHAE G Y

,

HA B J

. The comparative evaluation of fermented and non-fermented soybean extract on antioxidation and whitening[J]. Toxicology research, 2011, 27:205-209.

{{custom_citation.pmid}1}https://doi.org/{{custom_citation.url}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}3}{{custom_citation.url}9}本文引用 [{{custom_citation.url}0}]摘要{{custom_citation.url}8}[12]LI S Y

,

ZHAO Y J

,

ZHANG L

, et al. Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods[J]. Food chemistry, 2012, 135(3):1914-1919.

{{custom_citation.url}6}https://doi.org/{{custom_citation.url}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citationIndex}8}{{custom_citationIndex}4}本文引用 [{{custom_ref.citationList}5}]摘要{{custom_citation.annotation}3}[13]LI J Y

,

JIN M M

,

MENG J

, et al. Exopolysaccharide from Lactobacillus planterum LP6: antioxidation and the effect on oxidative stress[J]. Carbohydrate polymers, 2013, 98(1):1147-1152.

{{custom_citation.annotation}1}https://doi.org/{{custom_citation.annotation}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}3}{{custom_ref.citedCount>0}9}0}8}=={{custom_ref.citedCount>0}7}.length-1) || ({{custom_ref.citedCount>0}6} && {{custom_ref.citedCount>0}5}!='')" class="mag_main_zhengwen_left_div_ckwx_table_benwenyiny mag_rich_ref_abstract">本文引用 [{{custom_ref.citedCount>0}0}]摘要{{custom_ref.citationList}8}[14]CHENG C T

,

CHAN C F

,

HUANG W Y

, et al. Applications of Lactobacillus rhamnosus spent culture supernatant in cosmetic antioxidation, whitening and moisture retention applications[J]. Molecules, 2013, 18(11):14161-14171.

{{custom_ref.citationList}6}https://doi.org/{{custom_ref.citationList}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.id}8}{{custom_ref.id}4}本文引用 [{{custom_ref.citedCount}5}]摘要{{custom_citationIndex}3}[15]

吳國(guó)虹, 肖開(kāi)前, 徐吉祥. 水果酵素制備及功能作用的研究進(jìn)展[J]. 現(xiàn)代食品, 2021(7):5-8.

{{custom_citationIndex}1}https://doi.org/{{custom_ref.citationList}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}3}{{custom_ref.bodyP_ids}9}本文引用 [{{custom_ref.bodyP_ids}0}]摘要{{custom_bodyP_id}8}[16]

梁紅敏, 劉潔, 史紅梅. 食用植物酵素研究進(jìn)展[J]. 食品工業(yè), 2020, 41(7):193-197.

{{custom_bodyP_id}6}https://doi.org/{{custom_bodyP_id}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}8}{{custom_citation.annotation}4}本文引用 [{{custom_citation.annotation}5}]摘要{{custom_citation.annotation}3}[17]

張琪, 朱丹, 牛廣財(cái), 等. 高通量測(cè)序分析沙棘酵素自然發(fā)酵過(guò)程中細(xì)菌多樣性[J]. 食品科學(xué), 2022, 43(8):158-165.

{{custom_citation.annotation}1}https://doi.org/{{custom_citation.annotation}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}3}{{custom_citation.annotation}9}本文引用 [{{custom_citation.annotation}0}]摘要{{custom_citation.annotation}8}[18]

牛廣財(cái), 張琪, 朱丹, 等. 沙棘酵素自然發(fā)酵過(guò)程中真菌多樣性及群落結(jié)構(gòu)[J]. 中國(guó)食品學(xué)報(bào), 2022, 22(7):267-277.

{{custom_citation.annotation}6}https://doi.org/{{custom_citation.annotation}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}8}{{custom_ref.citationList}4}本文引用 [{{custom_citation.content}5}]摘要{{custom_citation.doi}3}[19]

湯燦輝, 王夢(mèng)禪, 劉少雄, 等. 沙棘酵素自然發(fā)酵過(guò)程中品質(zhì)特征和細(xì)菌群落動(dòng)態(tài)變化[J]. 食品工業(yè)科技, 2021, 42(23):150-157.

{{custom_citation.doi}1}https://doi.org/{{custom_citation.doi}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}3}{{custom_citation.doi}9}本文引用 [{{custom_citation.doi}0}]摘要{{custom_citation.pmid}8}[20]

黃娟, 黃燕燕, 馮立科, 等. 自然發(fā)酵的嶺南桑葚果酒的細(xì)菌多樣性分析[J]. 中國(guó)食品學(xué)報(bào), 2023, 23(3):329-338.

{{custom_citation.pmid}6}https://doi.org/{{custom_citation.pmid}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}8}{{custom_citation.pmid}4}本文引用 [{{custom_citation.pmid}5}]摘要{{custom_citation.pmid}3}[21]

李艷杰. 食用植物酵素菌種選擇及功能作用研究進(jìn)展[J]. 遼寧林業(yè)科技, 2023(6):56-59.

{{custom_citation.pmid}1}https://doi.org/{{custom_citation.url}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}3}{{custom_citation.url}9}本文引用 [{{custom_citation.url}0}]摘要{{custom_citation.url}8}[22]

匡燕, 羅躍中. 水果酵素發(fā)酵工藝及質(zhì)量評(píng)價(jià)指標(biāo)研究進(jìn)展[J]. 食品工程, 2023(4):19-22.

{{custom_citation.url}6}https://doi.org/{{custom_citation.url}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citationIndex}8}{{custom_citationIndex}4}本文引用 [{{custom_ref.citationList}5}]摘要{{custom_citation.annotation}3}[23]MDUDUZI P M

. Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review[J]. Molecules, 2017, 22(8):1255.

{{custom_citation.annotation}1}https://doi.org/{{custom_citation.annotation}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}3}{{custom_ref.citedCount>0}9}0}8}=={{custom_ref.citedCount>0}7}.length-1) || ({{custom_ref.citedCount>0}6} && {{custom_ref.citedCount>0}5}!='')" class="mag_main_zhengwen_left_div_ckwx_table_benwenyiny mag_rich_ref_abstract">本文引用 [{{custom_ref.citedCount>0}0}]摘要{{custom_ref.citationList}8}[24]WANG Y Q

,

WU J T

,

LV M X

, et al. Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry[J]. Frontiers in bioengineering and biotechnology, 2021, 9:612285.

{{custom_ref.citationList}6}https://doi.org/{{custom_ref.citationList}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.id}8}{{custom_ref.id}4}本文引用 [{{custom_ref.citedCount}5}]摘要{{custom_citationIndex}3}[25]PLIONI I

,

BEKATOROU A

,

TERPOU A

, et al. Vinegar production from corinthian currants finishing side-stream: development and comparison of methods based on immobilized acetic acid bacteria[J]. Foods, 2021, 10(12):3133.

{{custom_citationIndex}1}https://doi.org/{{custom_ref.citationList}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}3}{{custom_ref.bodyP_ids}9}本文引用 [{{custom_ref.bodyP_ids}0}]摘要{{custom_bodyP_id}8}[26]LI Z

,

ZHENG M Z

,

ZHENG J S

, et al. Bacillus species in food fermentations: an underappreciated group of organisms for safe use in food fermentations[J]. Current opinion in food science, 2023, 50:12-18.

{{custom_bodyP_id}6}https://doi.org/{{custom_bodyP_id}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}8}{{custom_citation.annotation}4}本文引用 [{{custom_citation.annotation}5}]摘要{{custom_citation.annotation}3}[27]LAVEFVE L

,

MARASINI D

,

CARBONERO F

. Microbial ecology of fermented vegetables and non-alcoholic drinks and current knowledge on their impact on human health[J]. Advances in food and nutrition research, 2019, 87:147-185.

Fermented foods are currently experiencing a re-discovery, largely driven by numerous health benefits claims. While fermented dairy, beer, and wine (and other alcoholic fermented beverages) have been the subject of intensive research, other plant-based fermented foods that are in some case widely consumed (kimchi/sauerkraut, pickles, kombucha) have received less scientific attention. In this chapter, the current knowledge on the microbiology and potential health benefits of such plant-based fermented foods are presented. Kimchi is the most studied, characterized by primarily acidic fermentation by lactic acid bacteria. Anti-obesity and anti-hypertension properties have been reported for kimchi and other pickled vegetables. Kombucha is the most popular non-alcoholic fermented drink. Kombucha's microbiology is remarkable as it involves all fermenters described in known fermented foods: lactic acid bacteria, acetic acid bacteria, fungi, and yeasts. While kombucha is often hyped as a "super-food," only antioxidant and antimicrobial properties toward foodborne pathogens are well established; and it is unknown if these properties incur beneficial impact, even in vitro or in animal models. The mode of action that has been studied and demonstrated the most is the probiotic one. However, it can be expected that fermentation metabolites may be prebiotic, or influence host health directly. To conclude, plant-based fermented foods and drinks are usually safe products; few negative reports can be found, but more research, especially human dietary intervention studies, are warranted to substantiate any health claim.? 2019 Elsevier Inc. All rights reserved.

{{custom_citation.annotation}1}https://doi.org/{{custom_citation.annotation}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}3}{{custom_citation.annotation}9}本文引用 [{{custom_citation.annotation}0}]摘要{{custom_citation.annotation}8}[28]SANTIAGO C

,

RITO T

,

VIEIRA D

, et al. Improvement of Torulaspora delbrueckii genome annotation: towards the exploitation of genomic features of a biotechnologically relevant yeast[J]. Journal of fungi, 2021, 7(4):287.

{{custom_citation.annotation}6}https://doi.org/{{custom_citation.annotation}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}8}{{custom_ref.citationList}4}本文引用 [{{custom_citation.content}5}]摘要{{custom_citation.doi}3}[29]NISHIMURA I

,

SHINOHARA Y

,

OGUMA T

, et al. Survival strategy of the salt-tolerant lactic acid bacterium, Tetragenococcus halophilus, to Counteract koji mold, Aspergillus oryzae, in soy sauce brewing[J]. Bioscience biotechnology and biochemistry, 2018, 82(8):1-7.

{{custom_citation.doi}1}https://doi.org/{{custom_citation.doi}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}3}{{custom_citation.doi}9}本文引用 [{{custom_citation.doi}0}]摘要{{custom_citation.pmid}8}[30]AUNG M S

,

WONGSAKUL S

,

KITAZAWA H

, et al. Lipid oxidation changes of arabica green coffee beans during accelerated storage with different packaging types[J]. Foods, 2022, 11(19):3040-3040.

{{custom_citation.pmid}6}https://doi.org/{{custom_citation.pmid}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}8}{{custom_citation.pmid}4}本文引用 [{{custom_citation.pmid}5}]摘要{{custom_citation.pmid}3}[31]

楊彬彥, 黨婭, 黎坤怡. 藍(lán)莓酵素復(fù)合菌種發(fā)酵工藝優(yōu)化及品質(zhì)分析[J]. 中國(guó)釀造, 2023, 42(12):165-169.

該研究以藍(lán)莓為主要原料,以酵母菌、植物乳桿菌(Lactobacillus plantarum)、干酪乳桿菌(Lactobacillus casei)為發(fā)酵菌種制備藍(lán)莓酵素,以超氧化物歧化酶(SOD)酶活性為考察指標(biāo),首先通過(guò)均勻設(shè)計(jì)試驗(yàn)確定復(fù)合菌種的最佳接種量;其次通過(guò)單因素試驗(yàn),考察發(fā)酵時(shí)間、發(fā)酵溫度、初始總可溶性固形物含量及料液比對(duì)SOD活力的影響;最后通過(guò)響應(yīng)面試驗(yàn)獲得最佳發(fā)酵工藝條件。結(jié)果表明,酵母菌、植物乳桿菌、干酪乳桿菌三種菌株的最佳接種量分別為0.1%、2%、0.47%,藍(lán)莓酵素的最佳發(fā)酵工藝條件為發(fā)酵時(shí)間41.5 h,發(fā)酵溫度31 ℃,初始總可溶性固形物含量12 &#x000b0;Bx,料液比1&#x02236;5(g&#x02236;mL),在此優(yōu)化條件下,藍(lán)莓酵素的pH值為3.14,酒精度為0.2%vol,總酚含量為3.14 mg/mL,花色苷含量為26.06 mg/mL,乳酸菌活菌數(shù)為1.01&#x000D7;10<sup>7</sup> CFU/mL,SOD酶活性為103.01 U/mL。

{{custom_citation.pmid}1}https://doi.org/{{custom_citation.url}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}3}{{custom_citation.url}9}本文引用 [{{custom_citation.url}0}]摘要{{custom_citation.url}8}[32]

謝聰, 古勉輝, 錢(qián)曉兵, 等. 蓮霧酵素的發(fā)酵工藝研究及其質(zhì)量評(píng)價(jià)[J]. 食品安全導(dǎo)刊, 2023(36):131-133,138.

{{custom_citation.url}6}https://doi.org/{{custom_citation.url}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citationIndex}8}{{custom_citationIndex}4}本文引用 [{{custom_ref.citationList}5}]摘要{{custom_citation.annotation}3}[33]

吳德光, 鄧學(xué)聰, 胡智慧, 等. 植物乳桿菌發(fā)酵桑葚酵素工藝優(yōu)化及質(zhì)量評(píng)價(jià)[J]. 食品與機(jī)械, 2023, 39(11):198-203.

{{custom_citation.annotation}1}https://doi.org/{{custom_citation.annotation}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}3}{{custom_ref.citedCount>0}9}0}8}=={{custom_ref.citedCount>0}7}.length-1) || ({{custom_ref.citedCount>0}6} && {{custom_ref.citedCount>0}5}!='')" class="mag_main_zhengwen_left_div_ckwx_table_benwenyiny mag_rich_ref_abstract">本文引用 [{{custom_ref.citedCount>0}0}]摘要{{custom_ref.citationList}8}[34]

韓欣悅, 胡曉晴, 劉強(qiáng), 等. 牛蒡根果蔬復(fù)合酵素的研發(fā)[J]. 農(nóng)產(chǎn)品加工, 2023(21):8-11.

{{custom_ref.citationList}6}https://doi.org/{{custom_ref.citationList}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.id}8}{{custom_ref.id}4}本文引用 [{{custom_ref.citedCount}5}]摘要{{custom_citationIndex}3}[35]

張海燕, 康三江, 曾朝珍, 等. 響應(yīng)面法優(yōu)化沙棘酵素多菌種發(fā)酵工藝[J]. 中國(guó)釀造, 2023, 42(10):207-213.

以沙棘(Hippophae rhamnoides L.)為原料,利用釀酒酵母(Saccharomyces cerevisiae)、異常漢遜酵母(Hansenula anomala)和植物乳桿菌(Lactiplantibacillus plantarum)多菌種發(fā)酵制備沙棘酵素。以超氧化物歧化酶(SOD)、pH、可溶性固形物含量、總酸含量、感官評(píng)分、還原力等為評(píng)價(jià)指標(biāo),采用單因素試驗(yàn)及響應(yīng)面法優(yōu)化沙棘酵素多菌種發(fā)酵工藝。結(jié)果表明,沙棘酵素多菌種最佳發(fā)酵工藝為初始pH 5.18、釀酒酵母&#x02236;異常漢遜酵母&#x02236;植物乳植物桿菌1.0&#x02236;1.6&#x02236;2.6、接種量10.25%。在此工藝條件下,沙棘酵素產(chǎn)品的SOD活性最高,達(dá)到2 206.67 U/mL,pH為2.23,總酸含量為78.60 mg/mL,可溶性固形物含量為2.68 &#x000b0;Bx,乙醇含量為0.05 g/100 mL,總酚含量為18.85 mg/mL,總黃酮含量為12.49 mg/mL,維生素C(VC)含量為6.48 mg/mL,多糖含量為22.49 mg/mL,還原力(OD<sub>700 nm</sub>值)為2.65,產(chǎn)品色澤透亮金黃,香氣濃郁,感官評(píng)分為9.1分,其理化指標(biāo)及感官品質(zhì)均符合相關(guān)標(biāo)準(zhǔn)要求。該研究為沙棘的綜合利用和多菌種發(fā)酵酵素的廣泛應(yīng)用提供理論依據(jù)。

{{custom_citationIndex}1}https://doi.org/{{custom_ref.citationList}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}3}{{custom_ref.bodyP_ids}9}本文引用 [{{custom_ref.bodyP_ids}0}]摘要{{custom_bodyP_id}8}[36]

陳秋慧, 魏建敏, 穆先, 等. 刺梨果渣酵素復(fù)合發(fā)酵工藝優(yōu)化[J]. 中國(guó)調(diào)味品, 2023, 48(9):122-130.

{{custom_bodyP_id}6}https://doi.org/{{custom_bodyP_id}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}8}{{custom_citation.annotation}4}本文引用 [{{custom_citation.annotation}5}]摘要{{custom_citation.annotation}3}[37]

蔣麗施, 萬(wàn)千帆, 王朝宇, 等. 甘孜梨果仙人掌果酵素粉的制備條件及抗氧化活性研究[J]. 中國(guó)食品添加劑, 2023, 34(9):174-179.

{{custom_citation.annotation}1}https://doi.org/{{custom_citation.annotation}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}3}{{custom_citation.annotation}9}本文引用 [{{custom_citation.annotation}0}]摘要{{custom_citation.annotation}8}[38]

張笑瑩, 趙江麗, 李月, 等. 雪花梨酵素二步發(fā)酵工藝優(yōu)化[J]. 現(xiàn)代食品科技, 2023, 39(7):32-41.

{{custom_citation.annotation}6}https://doi.org/{{custom_citation.annotation}2}https://www.ncbi.nlm.nih.gov/pubmed/{{referenceList}8}{{referenceList}4}本文引用 [{{custom_ref.id}5}]摘要{{custom_index}3}[39]

魏玉娟, 郁梅山, 李雪梅, 等. 哈密瓜酵素制備工藝探索優(yōu)化及性能[J]. 廣州化工, 2022, 50(5):55-58.

{{custom_index}1}https://doi.org/{{custom_ref.nian}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.nian}3}{{custom_ref.citedCount}9}本文引用 [{{custom_ref.citedCount}0}]摘要{{custom_ref.citationList}8}[40]

賀瑩, 武宇詩(shī). 木棗果蔬酵素發(fā)酵工藝優(yōu)化[J]. 食品工業(yè), 2021, 42(7):106-110.

{{custom_ref.citationList}6}https://doi.org/{{custom_ref.citationList}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.content}8}{{custom_citation.content}4}本文引用 [{{custom_citation.doi}5}]摘要{{custom_citation.doi}3}[41]

陳林, 蘇珊, 吳應(yīng)梅, 等. 紅陽(yáng)獼猴桃酵素發(fā)酵工藝優(yōu)化及其體外抗氧化活性[J]. 現(xiàn)代食品科技, 2021, 37(4):224-233.

{{custom_citation.doi}1}https://doi.org/{{custom_citation.doi}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}3}{{custom_citation.doi}9}本文引用 [{{custom_citation.doi}0}]摘要{{custom_citation.pmid}8}[42]

顏飛翔, 董佳萍, 陳龍, 等. 北五味子麥芽酵素的制備及其抗氧化活性[J]. 中國(guó)釀造, 2019, 38(12):116-119.

以超氧化物歧化酶(SOD)活力為評(píng)價(jià)指標(biāo),通過(guò)單因素試驗(yàn)以及正交試驗(yàn),對(duì)植物乳桿菌(Lactobacillus plantarum)發(fā)酵的北五味子麥芽酵素的發(fā)酵工藝條件進(jìn)行優(yōu)化;并對(duì)該酵素產(chǎn)品的抗氧化活性進(jìn)行了研究。結(jié)果表明,植物乳桿菌發(fā)酵制備北五味子麥芽酵素的最佳發(fā)酵工藝條件為北五味子∶麥芽=2∶1(g∶g),發(fā)酵時(shí)間為3 d、接種量為1.5%、發(fā)酵溫度為41 ℃。在此最佳工藝條件下,北五味子麥芽酵素SOD酶活力為3 464.80 U/mL??寡趸钚越Y(jié)果表明,該酵素對(duì)超氧陰離子自由基清除能力、羥自由基清除能力、DPPH自由基清除能力和對(duì)ABTS+自由基清除能力分別達(dá)到了26.03%、97.25%、89.10%和0.613 7 mmol/L,表明該酵素具有較好的抗氧化活性。

{{custom_citation.pmid}6}https://doi.org/{{custom_citation.pmid}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}8}{{custom_citation.pmid}4}本文引用 [{{custom_citation.pmid}5}]摘要{{custom_citation.url}3}[43]TAVANO O L

,

AMISTá M J DE M

,

DEL C G

, et al. Isolation and evaluation of quinoa (Chenopodium quinoa willd.) protein fractions. a nutritional and bio-functional approach to the globulin fraction[J]. Current research in food science, 2022, 5:1028-1037.

{{custom_citation.url}1}https://doi.org/{{custom_citation.url}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}3}{{custom_citation.url}9}本文引用 [{{custom_citation.url}0}]摘要{{custom_citationIndex}8}[44]LYU Y M

,

WANG M

,

ZHANG Y W

, et al. Antioxidant properties of water-soluble polysaccharides prepared by co-culture fermentation of straw and shrimp shell[J]. Frontiers in nutrition, 2022, 9:1047932.

{{custom_citationIndex}6}https://doi.org/{{custom_citationIndex}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}8}{{custom_ref.citationList}4}本文引用 [{{custom_citation.annotation}5}]摘要{{custom_citation.annotation}3}[45]MAJOR N

,

BA?ON I

,

I?I? N

, et al. Bioactive properties, volatile compounds, and sensory profile of sauerkraut are dependent on cultivar choice and storage conditions[J]. Foods, 2022, 11(9):1218.

{{custom_citation.annotation}1}0}9}!=''" class="new_full_rich_cankaowenxian_zuozhe new_full_rich_cankaowenxian_lianjie">https://doi.org/{{custom_ref.citedCount>0}7}0}6} && {{custom_ref.citedCount>0}5}!=''" class="new_full_rich_cankaowenxian_zuozhe new_full_rich_cankaowenxian_lianjie">https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount>0}3}0}2} && {{custom_ref.citedCount>0}1}!=''" class="new_full_rich_cankaowenxian_zuozhe new_full_rich_cankaowenxian_lianjie">{{custom_citationIndex}9}本文引用 [{{custom_citationIndex}0}]摘要{{custom_ref.id}8}[46]JI H

,

KA Y M

,

SUNG C L

, et al. Inhibition of hypoxia-inducible factor-1α and vascular endothelial growth factor by chrysin in a rat model of choroidal neovascularization[J]. International journal of molecular sciences, 2020, 21(8):2842.

{{custom_ref.id}6}https://doi.org/{{custom_ref.id}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount}8}{{custom_ref.citedCount}4}本文引用 [{{custom_citationIndex}5}]摘要{{custom_ref.citationList}3}[47]HEO S J

,

KIM A

,

PARK M

, et al. Nutritional and functional properties of fermented mixed grains by solid-state fermentation with Bacillus amyloliquefaciens 245[J]. Foods, 2020, 9(11):14-19.

{{custom_ref.citationList}1}https://doi.org/{{custom_ref.bodyP_ids}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.bodyP_ids}3}{{custom_ref.id}9}本文引用 [{{custom_ref.id}0}]摘要{{custom_citation.annotation}8}[48]SONG S

,

LIU X Y

,

ZHAO B T

, et al. Effects of Lactobacillus plantarum fermentation on the chemical structure and antioxidant activity of polysaccharides from bulbs of Lanzhou City[J]. ACS omega, 2021, 6(44):29839-29851.

{{custom_citation.annotation}6}https://doi.org/{{custom_citation.annotation}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}8}{{custom_citation.annotation}4}本文引用 [{{custom_citation.annotation}5}]摘要{{custom_citation.annotation}3}[49]

謝明勇, 聶少平. 微生物發(fā)酵可提升植物多糖生物利用率[N]. 中國(guó)食品報(bào),2024-01-15(6).

{{custom_citation.annotation}1}https://doi.org/{{custom_citation.annotation}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}3}{{custom_citation.annotation}9}本文引用 [{{custom_citation.annotation}0}]摘要{{fundList_cn}8}[50]JIANG C L

,

LI X Y

,

SHEN W D

, et al. Bioactive polysaccharides and their potential health benefits in reducing the risks of atherosclerosis: a review[J]. Journal of food biochemistry, 2022, 46(9):14337.

{{fundList_cn}6}https://doi.org/{{fundList_cn}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_fund}8}{{custom_fund}4}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[51]MIAO W

,

LI N

,

WU J L

. Food-polysaccharide utilization via in vitro fermentation: microbiota, structure, and function[J]. Current opinion in food science, 2022, 48:100911.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[52]WUSIGAL E

,

LIANG L

,

LUO Y C

. Casein and pectin: structures, interactions, and applications[J]. Trends in food science & technology, 2020, 97:391-403.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[53]OKORO N O

,

ODIBA A S

,

OSADEBE P O

, et al. Bioactive phytochemicals with anti-aging and lifespan extending potentials in caenorhabditis elegans[J]. Molecules, 2021, 26(23):7323.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[54]XU W

,

HAN S

,

HUANG M Z

, et al. Antiaging effects of dietary polysaccharides: advance and mechanisms[J]. Oxidative medicine and cellular longevity, 2022, 2022:4362479.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[55]SHEN C Y

,

JIANG J G

,

YANG L

, et al. Anti-ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: pharmacological mechanisms and implications for drug discovery[J]. British journal of pharmacology, 2017, 174(11):1395-1425.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[56]

尹小慶, 文華英, 張玉紅, 等. 食用植物酵素中多酚類(lèi)物質(zhì)的研究進(jìn)展[J]. 食品與機(jī)械, 2023, 39(7):223-227.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[57]

尚琪, 蘇小育. 淺談酵素抗氧化活性成分——多酚[J]. 企業(yè)科技與發(fā)展, 2018(9):72-74.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[58]

孫遜, 李菲, 張雨, 等. 發(fā)酵果蔬汁的發(fā)酵方式、生物活性及品質(zhì)改善研究進(jìn)展[J]. 食品工業(yè)科技, 2023, 44(19):471-480.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[59]RATCHADAPORN K

,

KERDCHOECHUEN O

,

LAOHAKUNJIT N

, et al. B vitamins and prebiotic fructooligosaccharides of cashew apple fermented with probiotic strains Lactobacillus spp., Leuconostoc mesenteroides and Bifidobacterium longum[J]. Process biochemistry, 2018, 70:9-19.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[60]SZUTOWSKA J

,

GWIAZDOWSKA D

. Probiotic potential of lactic acid bacteria obtained from fermented curly kale juice[J]. Archives of microbiology, 2020, 203(3):1-14.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[61]SHAH S

,

TANG X J

,

SHAH F

. The consequences of fermentation metabolism on the qualitative qualities and biological activity of fermented fruit and vegetable juices[J]. Food chemistry: x, 2024, 21:101209.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[62]

商曰玲, 王清, 吳燕鈴, 等. 特種沙棘酵素的制備及其體外降脂性能分析[J]. 食品研究與開(kāi)發(fā), 2023, 44(22):61-67.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[63]

袁斌, 程筱棟, 王磊, 等. 果蔬酵素對(duì)營(yíng)養(yǎng)肥胖小鼠減肥效果比較研究[J]. 現(xiàn)代食品, 2020(12):183-186.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[64]HUANG H Y

,

KORIVI M

,

TSAI C H

, et al. Supplementation of Lactobacillus plantarum k68 and fruit-vegetable ferment along with high fat-fructose diet attenuates metabolic syndrome in rats with insulin resistance[J]. Evidence-based complementary and alternative medicine, 2013, 2013(6):943020.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[65]

王輝, 馬秀敏, 張鷹. 青梅酵素的生物活性及體外抑菌作用[J]. 食品工業(yè)科技, 2018, 39(12):39-43.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[66]

王虎玄, 柯西娜, 王聰, 等. 蘋(píng)果酵素的制備及其抗氧化功能研究[J]. 陜西科技大學(xué)學(xué)報(bào), 2023, 41(3):37-46.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[67]

王迪, 王穎, 張艷莉, 等. 蕓豆酵素發(fā)酵過(guò)程中組分及抗氧化功能研究[J]. 食品工業(yè)科技, 2021, 42(18):18-24.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[68]

趙迪, 白淼, 余萍, 等. 決明子菊花本草酵素的制備及降血壓作用研究[J]. 食品與發(fā)酵科技, 2023, 59(5):64-70.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[69]AHRéN I L

,

XU J

,

?NNING G

, et al. Antihypertensive activity of blueberries fermented by Lactobacillus plantarum DSM 15313 and effects on the gut microbiota in healthy rats[J]. Clinical nutrition, 2015, 34(4):719-726.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[70]BLANCA E L

,

GENOVEVA B

,

áNGELES O

, et al. Consumption of orange fermented beverage reduces cardiovascular risk factors in healthy mice[J]. Food and chemical toxicology, 2015, 78:78-85.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[71]DAI J

,

SHA R

,

WANG Z Z

, et al. Edible plant jiaosu: manufacturing, bioactive compounds, potential health benefits, and safety aspects[J]. Journal of the science of food and agriculture, 2020, 100(15):5313-5323.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[72]SMID E J

,

KLEEREBEZEM M

. Production of aroma compounds in lactic fermentations[J]. Annual review of food science and technology, 2014, 5(1):313-326.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[73]

舒暢, 吳春生, 鐘慈平, 等. 發(fā)酵食品微生物多樣性研究方法進(jìn)展[J]. 食品科學(xué), 2013, 34(15):397-402.

發(fā)酵食品因其獨(dú)特的風(fēng)味和高營(yíng)養(yǎng)價(jià)值而深受消費(fèi)者喜愛(ài),發(fā)酵微生物區(qū)系構(gòu)成和變化決定了發(fā)酵食品的品質(zhì)形成。本文對(duì)發(fā)酵食品微生物多樣性研究方法的進(jìn)展和各技術(shù)的優(yōu)缺點(diǎn)進(jìn)行綜述,以期為分析發(fā)酵食品品質(zhì)形成機(jī)理和提高產(chǎn)品安全性及品質(zhì)穩(wěn)定性提供一定的理論依據(jù)。

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[74]

張卿, 程文健, 陳麗嬌. 自然發(fā)酵與人工接種發(fā)酵比較研究及展望[J]. 科技創(chuàng)新與應(yīng)用, 2020(5):46-47.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}{{custom_ref.label}}{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}

基金

黑龍江省省屬高等學(xué)校基本科研業(yè)務(wù)“氯氟吡啶酯在粘質(zhì)沙雷氏菌作用下降解途徑及環(huán)境安全評(píng)價(jià)”(2022-KYYWF-1079)

{{custom_fund}}

相關(guān)知識(shí)

傳統(tǒng)發(fā)酵豆制品營(yíng)養(yǎng)功能成分研究進(jìn)展
植物酵素的作用與功效
紅茶菌成分及功能研究進(jìn)展
植物蛋白肉研究進(jìn)展
植物酵素飲品的作用與功效
發(fā)酵乳調(diào)控人體腸道營(yíng)養(yǎng)健康的研究進(jìn)展
重大研究成果!微生物發(fā)酵茶成分TeadenolB抑制乳腺癌
2025中國(guó)酵素飲料行業(yè)市場(chǎng)全景調(diào)研與發(fā)展前景預(yù)測(cè)
植物酵素能減肥嗎?
《食品科學(xué)》:重慶市農(nóng)業(yè)科學(xué)院楊娟副研究員等:乳酸菌的健康功效及其在發(fā)酵茶葉中的應(yīng)用進(jìn)展

網(wǎng)址: 食用植物酵素發(fā)酵過(guò)程中主要成分與功能研究進(jìn)展 http://m.u1s5d6.cn/newsview590254.html

推薦資訊