微塑料的人體富集及毒性機制研究進展
摘要: 微塑料(MPs)作為一種新型環(huán)境污染物已成為當下的研究熱點, 有關微塑料的人體健康風險和危害效應機制研究受到了廣泛關注.微塑料不斷地從環(huán)境中遷移并在人體內積累, 其對人群暴露的3個主要途徑為經口攝入、呼吸吸入和皮膚接觸, 主要暴露介質為食品、飲用水、灰塵和個人護理品.目前已在人體消化系統(tǒng)、呼吸系統(tǒng)、心血管系統(tǒng)和生殖系統(tǒng)的器官、體液及排泄物中檢出微塑料, 豐度范圍為0~1 206.94 n·g-1.現(xiàn)有的檢測分析技術具有不同的適用范圍、優(yōu)勢和不足, 針對實驗過程中可能污染樣品的問題列舉了實驗室質量保證和質量控制的操作方法.基于動物實驗、人體細胞和器官模型的研究闡述了微塑料對人體5大系統(tǒng)造成的潛在健康影響和作用機制, 進入人體后, 微塑料可能通過誘發(fā)細胞毒性、線粒體毒性、DNA損傷和細胞膜損傷等效應過程, 進而在人體各系統(tǒng)中引發(fā)器官的局部炎癥、菌群失調和代謝紊亂等嚴重后果, 來危害各系統(tǒng)及相關器官的正常功能.最后, 提出了現(xiàn)有研究中普遍存在的不足, 可為未來微/納米塑料對人體健康影響的研究提供方向.
BAO Ya-bo1,2,WANG Cheng-chen1,2,PENG Wu-guang1,2,NONG Dai-qian1,2,XIANG Ping1,2
Abstract: The effect of microplastics on the ecological environment and human health has become a topical issue, and research on the risks and harmful effects of MPs on human health in particular has attracted widespread attention. Due to the characteristics of small size, low degradability, and easy migration, MPs continuously migrate from the environment to the human body, and their main exposure pathways are oral ingestion, inhalation, and dermal contact, with the main exposure media being food, drinking water, dust, personal care products, etc. MPs have been detected in organs, fluids, and excreta of digestive, respiratory, cardiovascular, reproductive systems, etc. The abundance range of MPs in the human body is 0-1 206.94 particles per gram. After entering the human body, MPs can cause cytotoxicity, mitochondrial toxicity, DNA damage, cell membrane damage, and other effects on human cells and organs, leading to serious consequences such as local inflammation, ecological imbalance, metabolic disorders, etc., in various systems. Owing to their small specific surface area, they can also adsorb pollutants such as heavy metals, organic pollutants, antibiotics, pathogens, and harmful microorganisms, causing combined toxicity and immunotoxicity. In the end, we highlighted general deficiencies in existing studies and provided directions for future research on the influence of MPs on human health.
Key words:microplastics(MPs) contaminants exposure pathways human accumulation toxic effects
微塑料(microplastics, MPs)指直徑 < 5 mm的塑料微粒, 是近年來受國內外廣泛關注的一種新型污染物.自20世紀50年代大規(guī)模生產以來, 塑料被廣泛應用于建筑、包裝、運輸、個人護理產品和醫(yī)藥, 全球塑料產量在1950~2020年間由150 t增長到3.67億t, 其中2020年我國塑料產量高達1.05億t[1].據(jù)統(tǒng)計, 2019年全球塑料制品回收利用率僅9%, 按傳統(tǒng)模式處理率69%(包括:填埋和焚燒), 無人管理而滯留環(huán)境的部分占22%[2].塑料制品的濫用和不合理處置是MPs產生的主要原因[3].MPs根據(jù)成因可以分為原生微塑料和次生微塑料.原生微塑料指特地生產用于添加到個人護理用品和化妝品中的塑料微粒[4].次生微塑料指環(huán)境中原先較大的塑料制品在UV輻射、生物作用和磨損等作用下降解而形成的塑料微粒[5].隨著研究發(fā)展的需要, 將微塑料依據(jù)直徑大小進一步細分為:大塑料顆粒(> 25 mm)、中塑料顆粒(5~25 mm)、微塑料顆粒(1 μm~5 mm)、亞微塑料顆粒(100 nm~1 μm)和納米塑料顆粒(< 100 nm)[6].
由于粒徑小、易遷移和降解等特性[7], 微/納米塑料(M/NPs)廣泛分布于全球海洋、淡水、土地和大氣生態(tài)系統(tǒng)中.近年來, 伊朗新鮮積雪[8]、青藏高原河流[9]、阿爾卑斯山冰川[10]、北極中央盆地地下水[11]和中國海底沉積物[12]中均檢測出M/NPs, 其潛在的生態(tài)風險受到了廣泛關注.M/NPs進入生態(tài)系統(tǒng)后, 不僅會影響其生態(tài)系統(tǒng)服務功能, 同時對動物、植物和微生物產生有害影響[13].近年來, 越來越多的研究發(fā)現(xiàn)M/NPs可以通過口攝入和呼吸吸入進入人體, 由于M/NPs粒徑小且比表面積大, 能夠作為載體吸附其他有毒污染物(如:重金屬、持久有機污染物、抗生素、多環(huán)芳烴和多氯聯(lián)苯等)及有害病原體(如:致病細菌和真菌等)并將它們帶入人體內, 從而產生健康危害[3].此外, M/NPs在人體內降解后, 有毒添加劑(如:增塑劑、合成抗氧化劑、阻燃劑、光穩(wěn)定劑和染色劑等)隨之浸出[14, 15], 無疑會加重其毒性.目前, 有關M/NPs的人群暴露及其健康危害機制的研究成為了當下的研究熱點.鑒于此, 本文總結了M/NPs的人群暴露途徑, 在不同組織器官的富集特征, 及暴露后對人體產生的健康效應機制, 并提出了該領域現(xiàn)有研究的不足和未來可能的熱點方向.
1 微/納米塑料的人體暴露途徑
人體與外界環(huán)境時刻進行著物質交換(圖 1), 攝入食物、呼吸空氣和皮膚接觸的過程伴隨著M/NPs暴露.有研究表明, 經口攝入和呼吸吸入是M/NPs人體暴露主要的途徑, 雖然目前缺乏M/NPs穿透皮膚屏障被吸收的直接證據(jù), 但理論上直徑 < 100 nm的納米塑料(NPs)能夠穿透皮膚屏障被吸收[16, 17].
1.1 伴隨食物經口攝入
研究人員在海產品、飲品、食鹽、一次性塑料餐具和果蔬中檢測到了M/NPs, 并指出經口攝入是M/NPs最主要的暴露途徑.有研究表明, M/NPs能夠沿著食物鏈向更高營養(yǎng)級轉移, 最終隨著食物轉移到人的消化系統(tǒng)中.Nor等[18]建立了兒童和成人終生暴露模型, 估算出一個兒童或成人每天攝入M/NPs的數(shù)量的中位數(shù)分別為553個與883個.Cox等[19]匯編了來自鹽、海鮮、蜂蜜、飲用水和糖的M/NPs污染數(shù)據(jù), 并結合飲食習慣估算出美國民眾每人每年對M/NPs的攝入量約3.9×104~5.2×104個.近年來, 食物中M/NPs的污染成為人們關注的焦點.
1.1.1 海產品M/NPs污染
已有研究證實了一些浮游動物和濾食性動物能夠直接攝入M/NPs.目前, 全球已累計在120多種具有重要漁業(yè)價值的物種中發(fā)現(xiàn)了M/NPs污染, 其中M/NPs在貝類、魚類、甲殼類和海藻等海產品中被大量檢出[20~22].據(jù)統(tǒng)計, 消費者每食用100 g貽貝將攝入70種M/NPs.此外, 海洋生物消化道和鰓中M/NPs的富集更為豐富, 食用完整的或不完全去除內臟的海產品會增加M/NPs對人體的暴露量[23, 24].最近的一項來自韓國的研究也證實, 其民眾每人每年通過食用4種常售雙殼貝類造成的M/NPs攝入量達212個[25].
1.1.2 飲用水和飲料M/NPs污染
M/NPs普遍存在于各類飲用水和飲料中.其中, 水源污染、處理過程中污染和自來水管管壁脫落是自來水被M/NPs污染的主要原因[26].Kosuth等[27]研究發(fā)現(xiàn)自來水中M/NPs檢出率高達81%, 平均豐度為5.45 n·L-1, 每人每年因自來水攝入量約為5 800個.因具有易攜帶性、選擇多樣性和食品安全性等優(yōu)點, 瓶裝水和飲料的消費日益增長, 自1940~2015年, 法國民眾每人每年對瓶裝水的消費量從6 L增長至140 L[28].瓶裝水和飲料中M/NPs的主要來源是塑料瓶蓋與包裝瓶.Kankanige等[29]對泰國市場常售的一次性塑料瓶裝水進行分析, 結果表明M/NPs平均豐度為(140±19)n·L-1, 粒徑約6.5~20 μm, 其主要聚合物類型為聚乙烯(PE)、聚對苯二甲酸乙二醇酯(PET)、聚丙烯(PP)和聚酰胺(PA).相比自來水, 飲用瓶裝水導致更高的M/NPs攝入, 若人群僅通過飲用瓶裝水而達到推薦飲水量, 則每人每年因此產生的M/NPs額外攝入量將高達9×104個, 若僅飲用自來水, 這一數(shù)值將減少到4×103個[19].可見飲用水M/NPs污染已成為人類攝入M/NPs的重要來源之一, 建議減少飲用塑料包裝的水或飲料以有效降低M/NPs的攝入量和健康風險.
1.1.3 食鹽M/NPs污染
食鹽能提供人體必需元素, 是人類長期的必需品, 然而被M/NPs污染的食鹽是一個慢性暴露源.商品鹽(包括:海鹽、井鹽、巖鹽和湖鹽等)被M/NPs污染的問題已在全球各國廣泛報告[30~32].據(jù)Lee等[33]研究證實, 全球94%的鹽產品中含有M/NPs, 包括27種聚合物類型, 其中PET、PP和PE占絕大多數(shù).食鹽被M/NPs污染是多源的, 在采集、風干、加工和運輸?shù)冗^程中, 食鹽都可能被M/NPs污染.更有研究發(fā)現(xiàn), 海鹽樣本中M/NPs的豐度遠高于巖鹽及湖鹽樣本[30], 這可能與食鹽產生的天然環(huán)境中M/NPs污染程度有關.
1.1.4 水果蔬菜的M/NPs污染
2022年, Conti等[34]首次在食用水果(蘋果和梨)與蔬菜(胡蘿卜、花椰菜、生菜和土豆)中發(fā)現(xiàn)M/NPs.Dong等[35]研究發(fā)現(xiàn), 1 μm的聚苯乙烯微塑料(PS-MPs)能夠進入胡蘿卜根并積累在細胞間隙中, 而0.2 μm的PS-MPs則能夠遷移到葉子上, 并且土壤-植物系統(tǒng)中M/NPs的遷移受到重金屬的影響.As(Ⅲ)能使得細胞壁變形以及PS-MPs攜帶負電荷的面積增加, 從而使更大直徑的PS-MPs得以進入胡蘿卜細胞.此外, Liu等[36]還在食用生雞蛋中檢測出M/NPs, 蛋黃中M/NPs的平均數(shù)量高于蛋白, 蒸熟操作后的結果不變.雞蛋中微塑料可能來自雞體內, 或是包裝和運輸過程[37].
1.1.5 塑料包裝、餐具和廚具的M/NPs污染
食品接觸到塑料包裝、一次性餐具和廚具而引發(fā)M/NPs污染的問題廣泛存在.Du等[38]對中國5個城市常用的外賣餐盒進行研究, 發(fā)現(xiàn)所有餐盒中都存在M/NPs, 它們主要源自塑料餐盒內壁脫落和灰塵沉降.高溫、機械應力和長時間存放食品都能導致塑料餐具產生更多M/NPs.假設每人每日消耗4~5個一次性塑料水杯, 每人每年將因此攝入3.7×104~8.9×104個M/NPs[39].使用塑料奶瓶而導致配方奶粉受到M/NPs污染的問題值得注意, Li等[40]研究發(fā)現(xiàn), 聚丙烯(PP)奶瓶一次性釋放的M/NPs的豐度高達1.62×107 n·L-1, 這可能對嬰兒健康構成風險.此外, 不粘鍋涂層通常以聚四氟乙烯(PTFE)作為主要材料, 涂層破損能導致2.3×106個微粒脫落[41].
1.2 呼吸與皮膚接觸暴露
M/NPs在室內外環(huán)境空氣中普遍存在, 其主要來源是合成紡織品的磨損與洗滌、合成橡膠輪胎及建材的磨損、灰塵的懸浮與擴散、以及空氣中懸浮的M/NPs能夠直接地和持續(xù)地被吸入人體呼吸道及肺部[42, 43].M/NPs進入上呼吸道后, 大部分能夠通過咳嗽、打噴嚏以及擤鼻涕等方式排出, 或隨黏液一起吞咽, 其余進入肺部的M/NPs中大部分能通過吞噬作用和淋巴運輸清除, 余下的則會積累在肺部[42].有研究者使用人體模型進行空氣采樣, 估算出一個輕度活動的男性每天能吸入272個M/NPs[44].
個人護理用品(包括:牙膏和潔面乳)、化妝品(眼影)、合成紡織品和灰塵是皮膚接觸M/NPs的主要源頭[42, 45].作為人體的物理屏障, 皮膚能夠防止環(huán)境微粒的滲透, 直徑 < 100 nm的微粒才能穿透橫紋肌角質層[16], 因此普通的皮膚接觸難以使M/NPs進入人體.有研究表明直徑 < 40 nm的金屬銀納米粒子可以穿透皮膚, 19 nm的氧化鋅納米粒子可以透過皮膚進入循環(huán)系統(tǒng)[46].Vogt等[47]研究發(fā)現(xiàn), 當毛鞘被拔出時, 40 nm的納米顆??梢源┩该疫M入表皮細胞.可能與其他納米粒子一樣, 老化的皮膚、患傷處和毛孔處對NPs有更強的滲透能力[48].然而目前有關M/NPs皮膚接觸暴露的研究較少, 并且缺乏關于M/NPs穿透皮膚屏障和產生毒性效應的直接證據(jù), 但不能排除M/NPs能夠穿越皮膚屏障并誘發(fā)氧化應激、局部炎癥和異物反應的推論.
2 微塑料在人體內的富集情況與檢測分析技術2.1 微塑料在人體內的富集狀況及影響因素
由于人體實驗涉及到生命健康和人倫道德等問題, 目前關于M/NPs的人體富集證據(jù)較為匱乏, 有限的證據(jù)主要源于對人體體液、排泄物、人體器官廢棄物和尸體的檢測.現(xiàn)將目前為止在人體中檢測出M/NPs富集情況總結為表 1.

自2019年首次在人類糞便中檢測出M/NPs以來, 至今已在人體的消化系統(tǒng)、呼吸系統(tǒng)、心血管系統(tǒng)和生殖系統(tǒng)的器官、體液和排泄物中檢測出M/NPs, 這表明M/NPs在人體內普遍存在.其中, 血液、血栓和隱靜脈血管中的檢測結果支撐了M/NPs能夠隨著血液在血管中遷移的假設.此外, 在人類母乳、胎盤、胎糞和嬰兒糞便中檢測到M/NPs的存在, 發(fā)現(xiàn)糞便中出現(xiàn)的MPs隨著嬰兒母乳攝入量而增加, 說明嬰兒糞便中M/NPs的主要來源可能是受污染的母乳和奶粉等[62].胎糞是嬰兒在出生后的首次排泄物, 主要為母體內由胎盤供給的營養(yǎng)物質代謝而來, 證實了經人類胎盤離體模型的M/NPs轉運, 在動物實驗中發(fā)現(xiàn)MPs能夠代際傳遞[64~67].以上結果提示了M/NPs通過母體傳遞到胎兒或新生兒體內的可能性, 包括M/NPs可能會通過乳汁傳遞和胎盤轉運, 然而, 嬰兒胎糞與母體胎盤中的M/NPs物質構成存在差異, 提示了部分M/NPs可能源自母體宮內暴露源[62].
有研究表明, M/NPs普遍在食品和人類消化道組織中的富集, 并且具有穿越人體細胞和組織屏障的能力, 以上證據(jù)支撐了M/NPs能夠從消化道內轉移并積累到消化道組織中的推測, 這一過程可能受到多種因素影響, 包括M/NPs的尺寸、形狀、表面形態(tài)、聚合物類型、暴露途徑、暴露時間和暴露濃度、人體組織特異性和健康狀況.其中, 粒徑是影響M/NPs被細胞內化的主要因素[68~71].較大粒徑的M/NPs可能無法穿透細胞屏障進入細胞內, 但會對細胞膜造成物理損傷;在進入細胞的M/NPs中, 稍大的顆粒主要通過吞噬作用進入細胞中, 較小的微粒則通過胞飲作用、網(wǎng)格蛋白和小泡介導進入細胞, 它們最終都會在細胞質中積累[70].聚苯乙烯納米塑料(PS-NPs)比PS-MPs更容易進入細胞, 并且細胞對M/NPs的攝取量與暴露時間成正比[72].此外, 人體疾病可能是驅動M/NPs富集的關鍵因素之一.Cetin等[50]研究發(fā)現(xiàn), 正常人結腸組織中的M/NPs數(shù)量遠低于直腸腺癌患者結腸腫瘤組織中M/NPs的數(shù)量.Horvatits等[51]研究發(fā)現(xiàn), 相比無潛在肝病患者, 肝硬化患者的肝組織中M/NPs豐度更高.Chen等[73]對肺組織中的M/NPs進行檢測, 其中2/3的M/NPs存在于腫瘤組織中.但不能排除M/NPs可能是誘發(fā)疾病的原因, 它們的因果關系還需要進一步深入研究.此外, 職業(yè)條件(包括:工作時長和工作環(huán)境等)和人群年齡也會影響M/NPs在呼吸系統(tǒng)中的積累量[73, 74].其中, 室內工作人員鼻腔沖洗液中的M/NPs豐度高于快遞員, 這可能是由于室內灰塵樣本中的M/NPs豐度比室外的灰塵樣本高而導致的.另外, 組織特異性是影響M/NPs富集的可能因素之一, 結腸作為營養(yǎng)物質吸收的器官可能有更高的M/NPs滲透性, 同時, 消化過程導致M/NPs進一步碎裂和降解, 使得結腸能夠接觸到更高豐度和更小粒徑的M/NPs, 以上因素導致了結腸中M/NPs的積累量明顯高于其他器官.雖然M/NPs在人體內的存在已經被證實, 但其在各系統(tǒng)中的積累、轉移、最終歸宿和影響因素仍然存在許多知識空白, 需要更多探索性和驗證性的研究, 以為人體健康風險評估提供完整和可靠的數(shù)據(jù).
2.2 人體中M/NPs的樣本處理及檢測技術
根據(jù)表 1可知, 目前在人體富集的M/NPs的檢測分析研究中, 需要先后經過取樣、預處理(包括:消解、過濾和分離)以及微塑料的表征.微塑料的表征技術是核心, 通常分為物理特性分析視覺檢測和化學特性檢測技術.視覺觀察是通過直接使用人眼或者借助光學顯微鏡對M/NPs進行大致分類和計數(shù)的檢測技術.由表 1可知, 研究中使用到了光學顯微鏡(包括:體式顯微鏡、熒光顯微鏡和偏振光顯微鏡), 主要用于物理特性檢測(包括:濾膜上M/NPs的物質識別、計數(shù)、尺寸、形態(tài)和顏色).然而, 觀察結果常受到實驗人員主觀選擇、顯微鏡質量以及M/NPs自身物理特性影響, 導致較大誤差的產生, 故不建議單獨使用[75, 76].
根據(jù)表 1可知, 先前的研究中主要采用的化學檢測技術為拉曼光譜法(Raman)、傅里葉變換紅外光譜法(FT-IR)、熱裂解-氣相色譜/質譜聯(lián)用法(Pyr-GC-MS)和激光直接紅外光譜法(LD-IR)等技術對人體內M/NPs的化學特性(包括:聚合物類型、化學鍵和官能團等)進行檢測, 現(xiàn)將人體內M/NPs的化學特性檢測技術總結為表 2.

上述不同檢測分析方法在識別和量化M/NPs方面具有各自的優(yōu)劣.然而, 組合技術利用了技術之間相互補充的特點, 彌補了技術單獨使用時的不足.例如, 微拉曼(μRaman)和微傅里葉(μFTIR)是現(xiàn)在主流的檢測分析方法, 它們分別為拉曼光譜法和傅里葉變換紅外光譜法與光學顯微鏡相融合的組合技術, 能夠同時檢測到M/NPs的物理化學特性指標, 擴大微粒的檢測范圍并降低漏檢率.
此外, 取樣和預處理過程中也存在許多不足之處.首先, 人體M/NPs取樣的非標準化會導致樣品存在被污染的風險, 從而降低結果的準確性.為了實驗室質量保證和質量控制, 研究人員們采取一些措施, 例如:①減少塑料制品使用, 包括使用棉制實驗服與手套、玻璃或金屬器皿盛裝樣品和金屬濾網(wǎng)過濾.②減少樣品、試劑和設備的污染, 包括取樣后盡快用純水或過氧化氫沖洗后迅速封閉保存, 所有試劑和設備用錫箔覆蓋, 用超純水和乙醇清潔器皿等.③建立“空白對照組”用以對實驗過程中產生的M/NPs污染的樣本進行校正.④在無窗和無風的超凈工作臺操作實驗, 避免M/NPs因氣流再懸浮污染樣品.⑤每個樣品單獨處理, 避免相互污染.其次, 人體樣本中M/NPs的提取多采用化學消解法, 即使用酸性或堿性的化學溶液對樣品進行消解, 旨在減少其他背景雜質的干擾.然而, 化學消解效果受消解試劑類型、消解溫度和時間的影響, 不當或過度消解則可能會破壞M/NPs聚合物宏觀結構從而使檢測結果出現(xiàn)誤差.針對上述不足之處, 應該根據(jù)適用條件和檢測目的選擇合適的技術進行檢測分析, 改良并制定M/NPs取樣和提取的統(tǒng)一標準, 鼓勵業(yè)界內積極開發(fā)成本低以及檢測結果全面的檢測分析技術, 以促進該領域研究的發(fā)展.
3 微塑料暴露對人體健康影響的機制研究
M/NPs能穿越組織屏障轉移至血液, 隨后到達全身各系統(tǒng)并在其組織和體液中不斷積累, 最終產生毒性效應[77].M/NPs進入細胞后, 能引發(fā)多種毒性效應, 包括氧化應激、細胞毒性和基因毒性, 具體表現(xiàn)為細胞死亡、線粒體毒性、細胞膜損傷、DNA損傷和染色體畸變等, 進而在人體各系統(tǒng)中引發(fā)器官的局部炎癥、菌群失調以及代謝紊亂等嚴重后果, 增加了相關疾病的發(fā)病風險, 甚至會引起腫瘤和癌癥的發(fā)生(圖 2).此外, 由于鼠類在一定程度上與人具有生理相關性, 常將鼠類用于研究M/NPs對有機體健康影響.然而動物模型實驗存在成本高、周期長、不易操作和有違倫理等問題, 研究人員也嘗試運用人體細胞和體外器官模型來研究M/NPs對人體健康風險.基于此, 下文綜述了M/NPs對人體各個系統(tǒng)的潛在健康影響及其內在機制.

3.1 消化系統(tǒng)
M/NPs首先影響消化系統(tǒng).當食物依次通過口腔、食道、胃和腸道時, M/NPs會隨之遷移, 其中一部分被排出體外, 另一部分則在體內積累, 以上M/NPs可能引發(fā)消化道炎癥、屏障通透性增強和微生物失調等.Zhang等[72]推測PS-MPs可能通過破壞人類結腸上皮細胞線粒體電子傳遞鏈(ETC)以誘導線粒體去極化, 從而導致早期細胞凋亡.Luo等[78]研究發(fā)現(xiàn)攝入PS-MPs能夠加重小鼠結腸炎癥, 具體表現(xiàn)為結腸長度縮短、炎癥加重、粘液分泌減少和結腸通透性增加.Fournier等[79]研究表明, M/NPs影響嬰兒腸道菌群種類組成, 減少有益菌群豐度、增加有害菌群豐度, 并且菌群變化幅度受到M/NPs的尺寸、豐度和種類的影響.Tong等[80]研究發(fā)現(xiàn), 幽門螺桿菌(H.pylori)在聚乙烯微塑料(PE-MPs)表面形成生物膜, 這加快了H.pylori在小鼠胃中的定居速度, 從而加劇胃部損傷和炎癥.此外, 隨著PS-MPs濃度和表面粗糙程度的增加, 人類結腸腺癌細胞(Caco-2細胞)的細胞膜完整性遭到破壞, 細胞存活率逐漸下降[81].小鼠攝入高濃度PE-MPs后出現(xiàn)明顯的腸道炎癥, 其與炎癥相關跨膜受體蛋白和轉錄因子表達也隨之升高[82].
肝臟作為人體內最大的代謝器官, 影響著脂肪的消化分解和脂溶性維生素的吸收.M/NPs可能對肝臟產生多種毒性, 包括氧化應激、細胞膜損傷、細胞纖維化、脂肪代謝混亂和能量代謝混亂[83~85].M/NPs通過誘導人類正常肝細胞(HL7702細胞)中細胞核DNA和mtDNA損傷, 以及激活cGAS/STING信號通路, 從而導致肝纖維化[83].斑馬魚經過M/NPs長期暴露, 其脂肪代謝混亂, 體重下降, 并且其脂肪酸代謝相關的基因表達水平出現(xiàn)降低趨勢[86].此外, M/NPs的毒性受多種因素的影響, 包括M/NPs的物理化學特性、M/NPs與其他污染物之間的相互作用.Wang等[87]研究發(fā)現(xiàn), 人工胃液能增強PS-MPs對肝細胞的毒害, 包括肝細胞的形態(tài)學改變、細胞膜損傷和氧化應激引起的細胞凋亡增加.Banerjee等[88]研究發(fā)現(xiàn), 較小的微粒更容易被人肝癌細胞(HepG2細胞)內化, 相比羧基化或非功能化PS-M/NPs, 胺化PS-M/NPs對HepG2細胞毒性更大.此外, PS-MPs與雙酚A(BPA)的聯(lián)合暴露能干擾脂肪代謝、加劇肝毒性, 并且干擾與多種脂質代謝過程相關的基因等, 導致脂肪變性[89].
3.2 呼吸系統(tǒng)
肺是呼吸系統(tǒng)最重要的器官, 目前關于M/NPs對呼吸系統(tǒng)影響的研究主要是基于肺細胞開展的.M/NPs能夠誘導肺細胞活性氧(ROS)增加和線粒體膜電位下降, 改變細胞正常結構, 從而提高急慢性呼吸系統(tǒng)疾病的發(fā)病風險.Zhang等[90]研究發(fā)現(xiàn), 聚對苯二甲酸乙二醇酯納米塑料(PET-NPs)誘導肺癌人類肺泡細胞(A549細胞)發(fā)生氧化應激和線粒體膜電位下降.Goodman等[91]研究發(fā)現(xiàn), PS-MPs能誘發(fā)A549細胞形態(tài)改變, 使其細胞質突起增加和細胞接觸喪失, PS-MPs通過影響人正常肺支氣管上皮細胞(BEAS-2B細胞)間連接蛋白, 導致肺屏障功能障礙, 增加了慢性阻塞性肺疾病的風險[92].此外, M/NPs的尺寸影響其內化速度和肺部的微生物調節(jié).相比20 nm和100 nm的PS-NPs, A549細胞對40 nm的PS-NPs的內化速度更快.這表明M/NPs可能存在內化速度相對較快的粒徑范圍[71].Zha等[93]研究發(fā)現(xiàn), MPs與NPs均可誘發(fā)小鼠鼻腔和肺部微生物菌群失調, 但NPs比MPs對肺部微生物區(qū)系的影響更大.此外, 環(huán)境中M/NPs的豐度與暴露時間影響著肺部患病風險.例如, 合成紡織業(yè)和植絨業(yè)的工人長時間接觸高豐度的M/NPs, 其患肺炎和慢性支氣管炎風險遠高于普通人[94].
3.3 生殖系統(tǒng)
不孕不育率的持續(xù)增長促使人們關注污染物對生殖系統(tǒng)的影響.M/NPs可能會引發(fā)細胞氧化應激、抗氧化活性降低和線粒體功能障礙, 進而引發(fā)生殖系統(tǒng)能量代謝失衡、激素紊亂和性器官損傷, 最終影響生殖能力下降, 造成不孕不育.M/NPs造成的雄性生殖毒性包括:睪丸質量下降、睪酮分泌減少、血睪屏障(BTB)遭受破壞和生精小管損傷, 從而導致生精功能障礙和精子畸形率上升, 以及精子活性和數(shù)量的下降[95~97].Jin等[98]研究證實, < 10 μm的MPs能進入睪丸細胞, 并在小鼠睪丸中積累.進入睪丸后, PS-MPs通過Hippo信號通路誘導幼鼠睪丸發(fā)育障礙[99], 通過氧化應激激活MAPK-Nrf2通路, 從而破壞大鼠BTB的完整性[97].此外, 常用的塑化劑鄰苯二甲酸鹽不僅會影響性激素分泌, 還能夠增加PS-MPs導致的睪丸轉錄組改變, 誘導氧化應激[100].
M/NPs誘發(fā)的雌性生殖毒性包括卵巢毒性、發(fā)情期縮短和影響后代的發(fā)育與健康.其中, 卵巢毒性包括卵巢炎癥、卵泡數(shù)量減少、卵巢細胞纖維化及細胞凋亡和顆粒細胞脫落[101~103].此外, 由于孕期和嬰兒期是環(huán)境暴露的窗口期, 環(huán)境污染物容易影響胎兒的健康與發(fā)育.PS-NPs通過影響肌肉和脂質的代謝延緩小鼠胎兒生長, 導致其體重下降[104].PS-NPs能在小鼠間存在代際傳遞現(xiàn)象, 并能在子代大腦中積累, 導致子代神經干細胞功能、神經細胞組成變化和神經發(fā)育異常, 從而增加其神經發(fā)育缺陷和大腦功能障礙的風險[105].胎盤的主要功能是將營養(yǎng)物質從母體轉運至胎兒, 提供膽固醇和類固醇激素以維持妊娠和胎兒發(fā)育.先前關于胎盤模型的研究表明, M/NPs的尺寸、表面特性、官能團和蛋白冠的不同組成能夠影響胎盤對M/NPs的攝取和轉運[66].人血白蛋白是提升M/NPs的轉運的關鍵因素[106].此外, 一些塑料添加劑被視為內分泌干擾物, 需關注妊娠期暴露塑料添加劑對相關激素的干擾, 及其與胎盤功能相關基因之間存在的潛在相關性[107].
3.4 免疫系統(tǒng)
M/NPs對免疫系統(tǒng)的毒性主要包括免疫毒性、提高有害微生物和病原體的感染能力.其中, 巨噬細胞和淋巴細胞是M/NPs免疫毒性的主要對象.食品包裝釋放的N/MPs能夠直接被小鼠巨噬細胞吸收和積累[108].PS-NPs進入人類THP-1巨噬細胞后, 能誘導ROS增加, 導致核損傷與線粒體膜電位下降, 從而降低細胞生存力.其中, 由不同結構和粒徑組成的PS-NPs混合物能產生更高的細胞毒性, 甚至改變THP-1巨噬細胞形態(tài)[109].?obano?lu等[110]發(fā)現(xiàn)PE-MPs對人外周血淋巴細胞產生基因毒性, 增加其微核(MN)、核質橋(NPB)和核芽(NBUD)形成的頻率.此外, M/NPs可能通過干擾免疫相關的基因和蛋白質影響免疫調節(jié).PE-MPs暴露增加了小鼠血液內中性粒細胞數(shù)量及免疫球蛋白A(IgA)水平, 并改變脾臟內的淋巴細胞亞群結構[111].
受污染的M/NPs作為載體, 提高了病原體和有害微生物對人體的感染能力, 這對免疫系統(tǒng)健康造成了嚴重威脅.Wang等[112]研究發(fā)現(xiàn), 大量甲型流感病毒(IAV)能夠富集在PS-MPs上, 并通過內吞作用進入A549細胞中, 這促進了IAV對A594細胞的感染.Kampf等[113]研究發(fā)現(xiàn), 冠狀病毒能連續(xù)9 d在塑料表面保持傳染性.紫外線輻射下老化的M/NPs對病毒有更強的吸附能力, 這能延長病毒存活期, 增加病毒傳染性[114].此外, M/NPs能夠在各種環(huán)境和生物之間傳遞抗生素抗性基因[115], 可能會增加有害微生物的抗生素耐藥性.
3.5 心血管系統(tǒng)
有研究提示M/NPs可能會導致血液毒性和血管毒性, 并受M/NPs自身的物理化學特性影響.其中, 血液毒性包括M/NPs引發(fā)溶血、血栓和凝血.Barshtein等[116]研究表明, PS-NPs引發(fā)溶血受微粒的尺寸和豐度影響, 但人血白蛋白是最關鍵的影響因素, 可以阻止溶血發(fā)生.Wu等[58]研究推斷, 環(huán)境微??赡苁茄ㄐ纬傻暮诵? 初始血栓會持續(xù)吸引血液中的微粒, 以增大血栓的體積.Oslakovic等[117]研究發(fā)現(xiàn), 胺基改性NPs與凝血相關因子Ⅶ和Ⅸ與結合能夠減少凝血酶的形成.此外, M/NPs能夠產生血管毒性.100 nm的NPs能在人臍靜脈內皮細胞的細胞質中積累, 誘導自噬啟動和自噬體形成, 這可能會引發(fā)細胞自噬過度和細胞壞死, 從而影響血管形成能力[68, 118].此外, M/NPs可能會導致心率異常和心臟功能受損.Chen等[119]研究發(fā)現(xiàn), 在水環(huán)境暴露PS-M/NPs后, 海洋小鳉胚胎的血紅蛋白和心臟發(fā)育相關基因表達受到影響.Pitt等[67]研究發(fā)現(xiàn), PS-NPs在斑馬魚中出現(xiàn)代際傳遞現(xiàn)象, 并在子代中觀察到心率過慢.Roshanzadeh等[120]研究發(fā)現(xiàn), 胺化羧酸鹽PS-NPs導致新生大鼠心肌細胞(NRVMs)收縮力降低, 影響方式隨時間而變化.前期, 由細胞內Ca2+水平和電生理活動的降低導致NRVMs收縮力降低;晚期則由于線粒體膜電位和細胞代謝的下降導致NRVMs收縮力進一步下降.
4 展望
研究重點逐漸從最初探究M/NPs的環(huán)境分布狀況與生態(tài)環(huán)境影響, 轉移到評估M/NPs造成的人類健康的影響且研究成果頗多, 但目前仍存在許多知識空白:
(1)關于M/NPs人體暴露狀況的研究, 大多針對環(huán)境介質進行檢測分析, 關于綜合暴露源頭導致的暴露量評估極其匱乏.應結合不同暴露途徑與暴露源, 以及地域、年齡、性別、職業(yè)和生活習慣等影響因素, 建立相關模型, 從而更為精確且全面地評估人體暴露量.
(2)以往研究的樣本量較少, 實驗數(shù)據(jù)受個體差異與檢測方法影響較大.需要更多資源的支持以開展大規(guī)模的M/NPs人體富集狀況的檢測.
(3)小粒徑和高濃度下M/NPs的富集和毒性有所增加.但毒理實驗多選用粒徑統(tǒng)一的PS微球作為暴露試劑.要考慮M/NPs在實際環(huán)境中的復雜性(如:尺寸、形狀、聚合物組成、表面形態(tài)和風化程度等).特別是M/NPs作為載體, 與其他環(huán)境污染物和有害微生物病原體之間存在相互作用及聯(lián)合毒性需要更多地關注.
(4)毒理研究集中于M/NPs高濃度急性暴露對人體健康的負面影響, 尚不清楚長期暴露的后果.然而實際環(huán)境狀況中暴露濃度低且M/NPs的生物積累和降解程度會隨著時間的推移而增加, 影響著M/NPs的生物毒性.因此, 基于低濃度和生命周期的M/NPs暴露對人體毒性的評估也是未來重要的研究方向.
5 結論
經口攝入是環(huán)境中的M/NPs最主要的暴露渠道, 食物、水和空氣是最主要的環(huán)境介質, 應重視.M/NPs在人體中的積累較為普遍, 但豐度較低, 除結直腸腺癌腫瘤組織外, 約(702.68±504.26)n·g-1 M/NPs突破組織屏障后隨著血液循環(huán)至全身各系統(tǒng), 粒徑較大的M/NPs雖然無法進入細胞, 但會損壞細胞膜, 較小的M/NPs能夠進入細胞內并在細胞質中積累.M/NPs毒性受到其尺寸、形狀、表面形態(tài)、聚合物類型、暴露途徑、暴露時間和暴露濃度的影響, 此外M/NPs在體內降解中會釋放有毒塑料添加劑, 并且M/NPs能將環(huán)境中其他有害污染物、微生物和病原體帶入體內, 以上因素能夠在細胞層面誘發(fā)氧化應激、細胞毒性、線粒體毒性和基因毒性等, 進而導致各系統(tǒng)炎癥反應、屏障受損、代謝紊亂、內分泌紊亂以及菌群失調, 增加了各系統(tǒng)相關疾病的發(fā)病風險, 甚至會引起腫瘤和癌癥的發(fā)生.然而, M/NPs對人體的毒害機制研究尚處于初步階段, 動物和人對污染物的毒性反應有所差異, 細胞和器官模型不能模擬真實的人體內部狀況, 其實驗結果用于評估M/NPs對人體健康風險存在不足之處.
參考文獻
[1] 劉微, 李宇欣, 榮颯爽, 等. 土壤中微塑料對陸生植物的毒性及其降解機制研究進展[J]. 環(huán)境科學, 2023, 44(11): 6267-6278.Liu W, Li Y X, Rong S S, et al. Research progress on toxicity of microplastics in soil to terrestrial plants and their degradation mechanism[J]. Environmental Science, 2023, 44(11): 6267-6278. [2] 張龍飛, 劉玉環(huán), 阮榕生, 等. 微塑料的形成機制及其環(huán)境分布特征研究進展[J]. 環(huán)境科學, 2023, 44(8): 4728-4741.
Zhang L F, Liu Y H, Ruan R S, et al. Research progress on distribution characteristics and formation mechanisms of microplastics in the environment[J]. Environmental Science, 2023, 44(8): 4728-4741. [3] Wang J, Liu X H, Li Y, et al. Microplastics as contaminants in the soil environment: a mini-review[J]. Science of the Total Environment, 2019, 691: 848-857. DOI:10.1016/j.scitotenv.2019.07.209 [4] Cole M, Lindeque P, Halsband C, et al. Microplastics as contaminants in the marine environment: a review[J]. Marine Pollution Bulletin, 2011, 62(12): 2588-2597. DOI:10.1016/j.marpolbul.2011.09.025 [5] Zhang K, Hamidian A H, Tubi? A, et al. Understanding plastic degradation and microplastic formation in the environment: a review[J]. Environmental Pollution, 2021, 274. DOI:10.1016/j.envpol.2021.116554 [6] Caldwell J, Taladriz-Blanco P, Lehner R, et al. The micro-, submicron-, and nanoplastic hunt: a review of detection methods for plastic particles[J]. Chemosphere, 2022, 293. DOI:10.1016/j.chemosphere.2022.133514 [7] 任欣偉, 唐景春, 于宸, 等. 土壤微塑料污染及生態(tài)效應研究進展[J]. 農業(yè)環(huán)境科學學報, 2018, 37(6): 1045-1058.
Ren X W, Tang J C, Yu C, et al. Advances in research on the ecological effects of microplastic pollution on soil ecosystems[J]. Journal of Agro-Environment Science, 2018, 37(6): 1045-1058. [8] Abbasi S, Alirezazadeh M, Razeghi N, et al. Microplastics captured by snowfall: a study in Northern Iran[J]. Science of the Total Environment, 2022, 822. DOI:10.1016/j.scitotenv.2022.153451 [9] Jiang C B, Yin L S, Li Z W, et al. Microplastic pollution in the rivers of the Tibet Plateau[J]. Environmental Pollution, 2019, 249: 91-98. DOI:10.1016/j.envpol.2019.03.022 [10] Crosta A, De Felice B, Antonioli D, et al. Microplastic contamination of supraglacial debris differs among glaciers with different anthropic pressures[J]. Science of the Total Environment, 2022, 851. DOI:10.1016/j.scitotenv.2022.158301 [11] Kanhai L D K, G?rdfeldt K, Lyashevska O, et al. Microplastics in sub-surface waters of the Arctic Central Basin[J]. Marine Pollution Bulletin, 2018, 130: 8-18. DOI:10.1016/j.marpolbul.2018.03.011 [12] Zhao J M, Ran W, Teng J, et al. Microplastic pollution in sediments from the Bohai Sea and the Yellow Sea, China[J]. Science of the Total Environment, 2018, 640?641: 637-645. [13] Beaumont N J, Aanesen M, Austen M C, et al. Global ecological, social and economic impacts of marine plastic[J]. Marine Pollution Bulletin, 2019, 142: 189-195. DOI:10.1016/j.marpolbul.2019.03.022 [14] Do A T N, Ha Y, Kwon J H. Leaching of microplastic-associated additives in aquatic environments: a critical review[J]. Environmental Pollution, 2022, 305. DOI:10.1016/j.envpol.2022.119258 [15] Gulizia A M, Patel K, Philippa B, et al. Understanding plasticiser leaching from polystyrene microplastics[J]. Science of the Total Environment, 2023, 857. DOI:10.1016/j.scitotenv.2022.159099 [16] Revel M, Chatel A, Mouneyrac C. Micro(nano)plastics: a threat to human health?[J]. Current Opinion in Environmental Science & Health, 2018, 1: 17-23. [17] Yu L Y, Li R L, Zhang Z, et al. Distribution, characteristics, and human exposure to microplastics in mangroves within the Guangdong-Hong Kong-Macao Greater Bay Area[J]. Marine Pollution Bulletin, 2022, 175. DOI:10.1016/j.marpolbul.2022.113395 [18] Nor N H M, Kooi M, Diepens N J, et al. Lifetime accumulation of microplastic in children and adults[J]. Environmental Science & Technology, 2021, 55(8): 5084-5096. [19] Cox K D, Covernton G A, Davies H L, et al. Human consumption of microplastics[J]. Environmental Science & Technology, 2019, 53(12): 7068-7074. [20] 張士春, 龐美霞, 趙洪雅, 等. 海產食品微納塑料污染現(xiàn)狀與危害[J]. 食品安全質量檢測學報, 2019, 10(9): 2689-2696.
Zhang S C, Pang M X, Zhao H Y, et al. Situation and harm of micro-nano plastic pollution in seafood[J]. Journal of Food Safety and Quality, 2019, 10(9): 2689-2696. [21] Piyawardhana N, Weerathunga V, Chen H S, et al. Occurrence of microplastics in commercial marine dried fish in Asian countries[J]. Journal of Hazardous Materials, 2022, 423. DOI:10.1016/j.jhazmat.2021.127093 [22] Diaz-Basantes M F, Nacimba-Aguirre D, Conesa J A, et al. Presence of microplastics in commercial canned tuna[J]. Food Chemistry, 2022, 385. DOI:10.1016/j.foodchem.2022.132721 [23] K?l?? E, Yücel N. Microplastic occurrence in the gastrointestinal tract and gill of bioindicator fish species in the northeastern Mediterranean[J]. Marine Pollution Bulletin, 2022, 177. DOI:10.1016/j.marpolbul.2022.113556 [24] Debbarma N, Gurjar U R, Ramteke K K, et al. Abundance and characteristics of microplastics in gastrointestinal tracts and gills of croaker fish (Johnius dussumieri) from off Mumbai coastal waters of India[J]. Marine Pollution Bulletin, 2022, 176. DOI:10.1016/j.marpolbul.2022.113473 [25] Cho Y, Shim W J, Jang M, et al. Abundance and characteristics of microplastics in market bivalves from South Korea[J]. Environmental Pollution, 2019, 245: 1107-1116. DOI:10.1016/j.envpol.2018.11.091 [26] Muhib M I, Uddin M K, Rahman M M, et al. Occurrence of microplastics in tap and bottled water, and food packaging: a narrative review on current knowledge[J]. Science of the Total Environment, 2023, 865. DOI:10.1016/j.scitotenv.2022.161274 [27] Kosuth M, Mason S A, Wattenberg E V. Anthropogenic contamination of tap water, beer, and sea salt[J]. PLoS One, 2018, 13(4). DOI:10.1371/journal.pone.0194970 [28] Brei V A. How is a bottled water market created?[J]. WIREs Water, 2018, 5(1). DOI:10.1002/wat2.1220 [29] Kankanige D, Babel S. Smaller-sized micro-plastics (MPs) contamination in single-use PET-bottled water in Thailand[J]. Science of the Total Environment, 2020, 717. DOI:10.1016/j.scitotenv.2020.137232 [30] Yang D Q, Shi H H, Li L, et al. Microplastic pollution in table salts from China[J]. Environmental Science & Technology, 2015, 49(22): 13622-13627. [31] Kuttykattil A, Raju S, Vanka K S, et al. Consuming microplastics? Investigation of commercial salts as a source of microplastics (MPs) in diet[J]. Environmental Science and Pollution Research, 2023, 30(1): 930-942. DOI:10.1007/s11356-022-22101-0 [32] I?iguez M E, Conesa J A, Fullana A. Microplastics in Spanish table salt[J]. Scientific Reports, 2017, 7(1). DOI:10.1038/s41598-017-09128-x [33] Lee H, Kunz A, Shim W J, et al. Microplastic contamination of table salts from Taiwan, including a global review[J]. Scientific Reports, 2019, 9(1). DOI:10.1038/s41598-019-46417-z [34] Conti G O, Ferrante M, Banni M, et al. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population[J]. Environmental Research, 2020, 187. DOI:10.1016/j.envres.2020.109677 [35] Dong Y M, Gao M L, Qiu W W, et al. Uptake of microplastics by carrots in presence of As (Ⅲ): combined toxic effects[J]. Journal of Hazardous Materials, 2021, 411. DOI:10.1016/j.jhazmat.2021.125055 [36] Liu Q R, Chen Z, Chen Y L, et al. Microplastics contamination in eggs: detection, occurrence and status[J]. Food Chemistry, 2022, 397. DOI:10.1016/j.foodchem.2022.133771 [37] Chen J H, Chen G H, Peng H Q, et al. Microplastic exposure induces muscle growth but reduces meat quality and muscle physiological function in chickens[J]. Science of the Total Environment, 2023, 882. DOI:10.1016/j.scitotenv.2023.163305 [38] Du F N, Cai H W, Zhang Q, et al. Microplastics in take-out food containers[J]. Journal of Hazardous Materials, 2020, 399. DOI:10.1016/j.jhazmat.2020.122969 [39] Zhou G Y, Wu Q D, Tang P, et al. How many microplastics do we ingest when using disposable drink cups?[J]. Journal of Hazardous Materials, 2023, 441. DOI:10.1016/j.jhazmat.2022.129982 [40] Li D Z, Shi Y H, Yang L M, et al. Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation[J]. Nature Food, 2020, 1(11): 746-754. DOI:10.1038/s43016-020-00171-y [41] Luo Y L, Gibson C T, Chuah C, et al. Raman imaging for the identification of Teflon microplastics and nanoplastics released from non-stick cookware[J]. Science of the Total Environment, 2022, 851. DOI:10.1016/j.scitotenv.2022.158293 [42] Yang X, Man Y B, Wong M H, et al. Environmental health impacts of microplastics exposure on structural organization levels in the human body[J]. Science of the Total Environment, 2022, 825. DOI:10.1016/j.scitotenv.2022.154025 [43] Sridharan S, Kumar M, Singh L, et al. Microplastics as an emerging source of particulate air pollution: a critical review[J]. Journal of Hazardous Materials, 2021, 418. DOI:10.1016/j.jhazmat.2021.126245 [44] Vianello A, Jensen R L, Liu L, et al. Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin[J]. Scientific Reports, 2019, 9(1). DOI:10.1038/s41598-019-45054-w [45] Yurtsever M. Tiny, shiny, and colorful microplastics: are regular glitters a significant source of microplastics?[J]. Marine Pollution Bulletin, 2019, 146: 678-682. DOI:10.1016/j.marpolbul.2019.07.009 [46] Saweres-Argüelles C, Ramírez-Novillo I, Vergara-Barberán M, et al. Skin absorption of inorganic nanoparticles and their toxicity: a review[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2023, 182: 128-140. DOI:10.1016/j.ejpb.2022.12.010 [47] Vogt A, Combadiere B, Hadam S, et al. 40nm, but not 750 or 1, 500nm, nanoparticles enter epidermal CD1a+ cells after transcutaneous application on human skin[J]. Journal of Investigative Dermatology, 2006, 126(6): 1316-1322. DOI:10.1038/sj.jid.5700226 [48] Prow T W, Grice J E, Lin L L, et al. Nanoparticles and microparticles for skin drug delivery[J]. Advanced Drug Delivery Reviews, 2011, 63(6): 470-491. DOI:10.1016/j.addr.2011.01.012 [49] Ibrahim Y S, Anuar S T, Azmi A A, et al. Detection of microplastics in human colectomy specimens[J]. JGH Open, 2021, 5(1): 116-121. DOI:10.1002/jgh3.12457 [50] Cetin M, Miloglu F D, Baygutalp N K, et al. Higher number of microplastics in tumoral colon tissues from patients with colorectal adenocarcinoma[J]. Environmental Chemistry Letters, 2023, 21(2): 639-646. DOI:10.1007/s10311-022-01560-4 [51] Horvatits T, Tamminga M, Liu B B, et al. Microplastics detected in cirrhotic liver tissue[J]. eBioMedicine, 2022, 82. DOI:10.1016/j.ebiom.2022.104147 [52] Schwabl P, K?ppel S, K?nigshofer P, et al. Detection of various microplastics in human stool[J]. Annals of Internal Medicine, 2019, 171(7): 453-457. DOI:10.7326/M19-0618 [53] Amato-Louren?o L F, Carvalho-Oliveira R, Júnior G R, et al. Presence of airborne microplastics in human lung tissue[J]. Journal of Hazardous Materials, 2021, 416. DOI:10.1016/j.jhazmat.2021.126124 [54] Jenner L C, Rotchell J M, Bennett R T, et al. Detection of microplastics in human lung tissue using μFTIR spectroscopy[J]. Science of the Total Environment, 2022, 831. DOI:10.1016/j.scitotenv.2022.154907 [55] Huang S M, Huang X X, Bi R, et al. Detection and analysis of microplastics in human sputum[J]. Environmental Science & Technology, 2022, 56(4): 2476-2486. [56] Jiang Y, Han J C, Na J, et al. Exposure to microplastics in the upper respiratory tract of indoor and outdoor workers[J]. Chemosphere, 2022, 307. DOI:10.1016/j.chemosphere.2022.136067 [57] Leslie H A, Van Velzen M J M, Brandsma S H, et al. Discovery and quantification of plastic particle pollution in human blood[J]. Environment International, 2022, 163. DOI:10.1016/j.envint.2022.107199 [58] Wu D, Feng Y D, Wang R, et al. Pigment microparticles and microplastics found in human thrombi based on Raman spectral evidence[J]. Journal of Advanced Research, 2022. DOI:10.1016/j.jare.2022.09.004 [59] Rotchell J M, Jenner L C, Chapman E, et al. Detection of microplastics in human saphenous vein tissue using μFTIR: a pilot study[J]. PLoS One, 2023, 18(2). DOI:10.1371/journal.pone.0280594 [60] Ragusa A, Svelato A, Santacroce C, et al. Plasticenta: first evidence of microplastics in human placenta[J]. Environment International, 2021, 146. DOI:10.1016/j.envint.2020.106274 [61] Zhu L, Zhu J Y, Zuo R, et al. Identification of microplastics in human placenta using laser direct infrared spectroscopy[J]. Science of the Total Environment, 2023, 856. DOI:10.1016/j.scitotenv.2022.159060 [62] Liu S J, Guo J L, Liu X Y, et al. Detection of various microplastics in placentas, meconium, infant feces, breastmilk and infant formula: a pilot prospective study[J]. Science of the Total Environment, 2023, 854. DOI:10.1016/j.scitotenv.2022.158699 [63] Ragusa A, Notarstefano V, Svelato A, et al. Raman microspectroscopy detection and characterisation of microplastics in human breastmilk[J]. Polymers, 2022, 14(13). DOI:10.3390/polym14132700 [64] Fournier S B, D'Errico J N, Adler D S, et al. Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy[J]. Particle and Fibre Toxicology, 2020, 17(1). DOI:10.1186/s12989-020-00385-9 [65] Medley E A, Spratlen M J, Yan B Z, et al. A systematic review of the placental translocation of micro- and nanoplastics[J]. Current Environmental Health Reports, 2023. DOI:10.1007/s40572-023-00391-x [66] Dusza H M, van Boxel J, van Duursen M B M, et al. Experimental human placental models for studying uptake, transport and toxicity of micro- and nanoplastics[J]. Science of the Total Environment, 2023, 860. DOI:10.1016/j.scitotenv.2022.160403 [67] Pitt J A, Trevisan R, Massarsky A, et al. Maternal transfer of nanoplastics to offspring in zebrafish (Danio rerio): a case study with nanopolystyrene[J]. Science of the Total Environment, 2018, 643: 324-334. DOI:10.1016/j.scitotenv.2018.06.186 [68] Lu Y Y, Li H Y, Ren H Y, et al. Size-dependent effects of polystyrene nanoplastics on autophagy response in human umbilical vein endothelial cells[J]. Journal of Hazardous Materials, 2022, 421. DOI:10.1016/j.jhazmat.2021.126770 [69] Ramsperger A F R M, Narayana V K B, Gross W, et al. Environmental exposure enhances the internalization of microplastic particles into cells[J]. Science Advances, 2020, 6(50). DOI:10.1126/sciadv.abd1211 [70] Lu Y Y, Cao M Y, Tian M P, et al. Internalization and cytotoxicity of polystyrene microplastics in human umbilical vein endothelial cells[J]. Journal of Applied Toxicology, 2023, 43(2): 262-271. DOI:10.1002/jat.4378 [71] Varela J A, Bexiga M G, ?berg C, et al. Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells[J]. Journal of Nanobiotechnology, 2012, 10: do-39.. [72] Zhang Y T, Wang S L, Olga V, et al. The potential effects of microplastic pollution on human digestive tract cells[J]. Chemosphere, 2022, 291. DOI:10.1016/j.chemosphere.2021.132714 [73] Chen Q Q, Gao J N, Yu H R, et al. An emerging role of microplastics in the etiology of lung ground glass nodules[J]. Environmental Sciences Europe, 2022, 34(1). DOI:10.1186/s12302-022-00605-3 [74] Ouyang Z Z, Mao R F, Hu E D, et al. The indoor exposure of microplastics in different environments[J]. Gondwana Research, 2022, 108: 193-199. DOI:10.1016/j.gr.2021.10.023 [75] 艾鑫宇, 田洪鈺, 岳鵬, 等. 大氣環(huán)境中微塑料的檢測技術研究進展[J]. 應用化工, 2023, 52(4): 1276-1282.
Ai X Y, Tian H Y, Yue P, et al. Research progress on detection technology of microplastics in the atmospheric environment[J]. Applied Chemical Industry, 2023, 52(4): 1276-1282. [76] 李臻陽, 楊書申, 徐亮, 等. 大氣環(huán)境中微塑料污染及其分析技術的研究進展[J]. 環(huán)境化學, 2022, 41(4): 1114-1123.
Li Z Y, Yang S S, Xu L, et al. Progress on microplastics pollution and its analysis methods in the atmosphere[J]. Environmental Chemistry, 2022, 41(4): 1114-1123. [77] Tsou T Y, Lee S H, Kuo T H, et al. Distribution and toxicity of submicron plastic particles in mice[J]. Environmental Toxicology and Pharmacology, 2023, 97. DOI:10.1016/j.etap.2022.104038 [78] Luo T, Wang D, Zhao Y, et al. Polystyrene microplastics exacerbate experimental colitis in mice tightly associated with the occurrence of hepatic inflammation[J]. Science of the Total Environment, 2022, 844. DOI:10.1016/j.scitotenv.2022.156884 [79] Fournier E, Ratel J, Denis S, et al. Exposure to polyethylene microplastics alters immature gut microbiome in an infant in vitro gut model[J]. Journal of Hazardous Materials, 2023, 443. DOI:10.1016/j.jhazmat.2022.130383 [80] Tong X H, Li B Q, Li J, et al. Polyethylene microplastics cooperate with Helicobacter pylori to promote gastric injury and inflammation in mice[J]. Chemosphere, 2022, 288. DOI:10.1016/j.chemosphere.2021.132579 [81] Yu X Q, Lang M F, Huang D F, et al. Photo-transformation of microplastics and its toxicity to Caco-2 cells[J]. Science of the Total Environment, 2022, 806. DOI:10.1016/j.scitotenv.2021.150954 [82] Li B Q, Ding Y F, Cheng X, et al. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice[J]. Chemosphere, 2020, 244. DOI:10.1016/j.chemosphere.2019.125492 [83] Shen R, Yang K R, Cheng X, et al. Accumulation of polystyrene microplastics induces liver fibrosis by activating cGAS/STING pathway[J]. Environmental Pollution, 2022, 300. DOI:10.1016/j.envpol.2022.118986 [84] Goodman K E, Hua T, Sang Q X A. Effects of polystyrene microplastics on human kidney and liver cell morphology, cellular proliferation, and metabolism[J]. ACS Omega, 2022, 7(38): 34136-34153. DOI:10.1021/acsomega.2c03453 [85] Cheng W, Li X L, Zhou Y, et al. Polystyrene microplastics induce hepatotoxicity and disrupt lipid metabolism in the liver organoids[J]. Science of the Total Environment, 2022, 806. DOI:10.1016/j.scitotenv.2021.150328 [86] Zhao Y, Bao Z W, Wan Z Q, et al. Polystyrene microplastic exposure disturbs hepatic glycolipid metabolism at the physiological, biochemical, and transcriptomic levels in adult zebrafish[J]. Science of the Total Environment, 2020, 710. DOI:10.1016/j.scitotenv.2019.136279 [87] Wang L X, Wang Y X, Xu M, et al. Enhanced hepatic cytotoxicity of chemically transformed polystyrene microplastics by simulated gastric fluid[J]. Journal of Hazardous Materials, 2021, 410. DOI:10.1016/j.jhazmat.2020.124536 [88] Banerjee A, Billey L O, McGarvey A M, et al. Effects of polystyrene micro/nanoplastics on liver cells based on particle size, surface functionalization, concentration and exposure period[J]. Science of the Total Environment, 2022, 836. DOI:10.1016/j.scitotenv.2022.155621 [89] Cheng W, Zhou Y, Xie Y C, et al. Combined effect of polystyrene microplastics and bisphenol A on the human embryonic stem cells-derived liver organoids: the hepatotoxicity and lipid accumulation[J]. Science of the Total Environment, 2023, 854. DOI:10.1016/j.scitotenv.2022.158585 [90] Zhang H J, Zhang S Y, Duan Z H, et al. Pulmonary toxicology assessment of polyethylene terephthalate nanoplastic particles in vitro[J]. Environment International, 2022, 162. DOI:10.1016/j.envint.2022.107177 [91] Goodman K E, Hare J T, Khamis Z I, et al. Exposure of human lung cells to polystyrene microplastics significantly retards cell proliferation and triggers morphological changes[J]. Chemical Research in Toxicology, 2021, 34(4): 1069-1081. DOI:10.1021/acs.chemrestox.0c00486 [92] Dong C D, Chen C W, Chen Y C, et al. Polystyrene microplastic particles: in vitro pulmonary toxicity assessment[J]. Journal of Hazardous Materials, 2020, 385. DOI:10.1016/j.jhazmat.2019.121575 [93] Zha H, Xia J F, Li S J, et al. Airborne polystyrene microplastics and nanoplastics induce nasal and lung microbial dysbiosis in mice[J]. Chemosphere, 2023, 310. DOI:10.1016/j.chemosphere.2022.136764 [94] Prata J C. Airborne microplastics: consequences to human health?[J]. Environmental Pollution, 2018, 234: 115-126. DOI:10.1016/j.envpol.2017.11.043 [95] D'Angelo S, Meccariello R. Microplastics: a threat for male fertility[J]. International Journal of Environmental Research and Public Health, 2021, 18(5). DOI:10.3390/ijerph18052392 [96] Deng Y F, Chen H X, Huang Y C, et al. Polystyrene microplastics affect the reproductive performance of male mice and lipid homeostasis in their offspring[J]. Environmental Science & Technology Letters, 2022, 9(9): 752-757. [97] Li S D, Wang Q M, Yu H, et al. Polystyrene microplastics induce blood–testis barrier disruption regulated by the MAPK-Nrf2 signaling pathway in rats[J]. Environmental Science and Pollution Research, 2021, 28(35): 47921-47931. DOI:10.1007/s11356-021-13911-9 [98] Jin H B, Ma T, Sha X X, et al. Polystyrene microplastics induced male reproductive toxicity in mice[J]. Journal of Hazardous Materials, 2021, 401. DOI:10.1016/j.jhazmat.2020.123430 [99] Zhao T X, Shen L J, Ye X, et al. Prenatal and postnatal exposure to polystyrene microplastics induces testis developmental disorder and affects male fertility in mice[J]. Journal of Hazardous Materials, 2023, 445. DOI:10.1016/j.jhazmat.2022.130544 [100] Deng Y F, Yan Z H, Shen R Q, et al. Enhanced reproductive toxicities induced by phthalates contaminated microplastics in male mice (Mus musculus)[J]. Journal of Hazardous Materials, 2021, 406. DOI:10.1016/j.jhazmat.2020.124644 [101] Liu Z Q, Zhuan Q, Zhang L Y, et al. Polystyrene microplastics induced female reproductive toxicity in mice[J]. Journal of Hazardous Materials, 2022, 42. DOI:10.1016/j.jhazmat.2021.127629 [102] Huang J, Zou L P, Bao M, et al. Toxicity of polystyrene nanoparticles for mouse ovary and cultured human granulosa cells[J]. Ecotoxicology and Environmental Safety, 2023, 249. DOI:10.1016/j.ecoenv.2022.114371 [103] Hou J Y, Lei Z M, Cui L L, et al. Polystyrene microplastics lead to pyroptosis and apoptosis of ovarian granulosa cells via NLRP3/Caspase-1 signaling pathway in rats[J]. Ecotoxicology and Environmental Safety, 2021, 212. DOI:10.1016/j.ecoenv.2021.112012 [104] Chen G Q, Xiong S Y, Jing Q, et al. Maternal exposure to polystyrene nanoparticles retarded fetal growth and triggered metabolic disorders of placenta and fetus in mice[J]. Science of the Total Environment, 2023, 854. DOI:10.1016/j.scitotenv.2022.158666 [105] Jeong B, Baek J Y, Koo J, et al. Maternal exposure to polystyrene nanoplastics causes brain abnormalities in progeny[J]. Journal of Hazardous Materials, 2022, 426. DOI:10.1016/j.jhazmat.2021.127815 [106] Gruber M M, Hirschmugl B, Berger N, et al. Plasma proteins facilitates placental transfer of polystyrene particles[J]. Journal of Nanobiotechnology, 2020, 18(1). DOI:10.1186/s12951-020-00676-5 [107] Li J, Zeng X W, Liang X L, et al. Gestational exposure to plastic additives and associations with placental function-related genes[J]. Environmental Science & Technology Letters, 2023, 10(1): 86-92. [108] Deng J Y, Ibrahim M S, Tan L Y, et al. Microplastics released from food containers can suppress lysosomal activity in mouse macrophages[J]. Journal of Hazardous Materials, 2022, 435. DOI:10.1016/j.jhazmat.2022.128980 [109] Koner S, Florance I, Mukherjee A, et al. Cellular response of THP-1 macrophages to polystyrene microplastics exposure[J]. Toxicology, 2023, 483. DOI:10.1016/j.tox.2022.153385 [110] ?obano?lu H, Belivermi? M, S?kdokur E, et al. Genotoxic and cytotoxic effects of polyethylene microplastics on human peripheral blood lymphocytes[J]. Chemosphere, 2021, 272. DOI:10.1016/j.chemosphere.2021.129805 [111] Park E J, Han J S, Park E J, et al. Repeated-oral dose toxicity of polyethylene microplastics and the possible implications on reproduction and development of the next generation[J]. Toxicology Letters, 2020, 324: 75-85. DOI:10.1016/j.toxlet.2020.01.008 [112] Wang C, Wu W J, Pang Z F, et al. Polystyrene microplastics significantly facilitate influenza A virus infection of host cells[J]. Journal of Hazardous Materials, 2023, 446. DOI:10.1016/j.jhazmat.2022.130617 [113] Kampf G, Todt D, Pfaender S, et al. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents[J]. Journal of Hospital Infection, 2020, 104(3): 246-251. DOI:10.1016/j.jhin.2020.01.022 [114] Lu J, Yu Z G, Ngiam L, et al. Microplastics as potential carriers of viruses could prolong virus survival and infectivity[J]. Water Research, 2022, 225. DOI:10.1016/j.watres.2022.119115 [115] Liu Y, Liu W Z, Yang X M, et al. Microplastics are a hotspot for antibiotic resistance genes: progress and perspective[J]. Science of the Total Environment, 2021, 773. DOI:10.1016/j.scitotenv.2021.145643 [116] Barshtein G, Arbell D, Yedgar S. Hemolytic effect of polymeric nanoparticles: role of albumin[J]. IEEE Transactions on NanoBioscience, 2011, 10(4): 259-261. DOI:10.1109/TNB.2011.2175745 [117] Oslakovic C, Cedervall T, Linse S, et al. Polystyrene nanoparticles affecting blood coagulation[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2012, 8(6): 981-986. DOI:10.1016/j.nano.2011.12.001 [118] Lee H S, Amarakoon D, Wei C i, et al. Adverse effect of polystyrene microplastics (PS-MPs) on tube formation and viability of human umbilical vein endothelial cells[J]. Food and Chemical Toxicology, 2021, 154. DOI:10.1016/j.fct.2021.112356 [119] Chen J C, Chen M Y, Fang C, et al. Microplastics negatively impact embryogenesis and modulate the immune response of the marine medaka Oryzias melastigma[J]. Marine Pollution Bulletin, 2020, 158. DOI:10.1016/j.marpolbul.2020.111349 [120] Roshanzadeh A, Oyunbaatar N E, Ganjbakhsh S E, et al. Exposure to nanoplastics impairs collective contractility of neonatal cardiomyocytes under electrical synchronization[J]. Biomaterials, 2021, 278. DOI:10.1016/j.biomaterials.2021.121175
相關知識
人體 100% 發(fā)現(xiàn)!廚房海綿每月脫落上萬億微塑料,需要擔心嗎?|對話專家
研究進展
環(huán)境污染與先天性心臟病的研究進展
全球環(huán)境與健康領域的研究熱點,以及我國環(huán)境與健康研究面臨的機遇與挑戰(zhàn)
電磁輻射對人體健康影響的多組學研究進展
開屏幫你問專家|如何應對微塑料這個“隱形的健康殺手”?
腸道菌群利用膳食纖維及其與人體健康關系研究進展
瘦型非酒精性脂肪性肝病的特點及其研究進展
PM2.5污染與低出生體重發(fā)生風險關聯(lián)的研究進展
妊娠期感染性疾病研究新進展(臨床綜述)
網(wǎng)址: 微塑料的人體富集及毒性機制研究進展 http://m.u1s5d6.cn/newsview69275.html
推薦資訊
- 1發(fā)朋友圈對老公徹底失望的心情 12775
- 2BMI體重指數(shù)計算公式是什么 11235
- 3補腎吃什么 補腎最佳食物推薦 11199
- 4性生活姿勢有哪些 盤點夫妻性 10428
- 5BMI正常值范圍一般是多少? 10137
- 6在線基礎代謝率(BMR)計算 9652
- 7一邊做飯一邊躁狂怎么辦 9138
- 8從出汗看健康 出汗透露你的健 9063
- 9早上怎么喝水最健康? 8613
- 10五大原因危害女性健康 如何保 7828