首頁 資訊 炭疽病發(fā)病草莓與健康草莓根際細菌群落結(jié)構(gòu)及功能差異

炭疽病發(fā)病草莓與健康草莓根際細菌群落結(jié)構(gòu)及功能差異

來源:泰然健康網(wǎng) 時間:2024年12月20日 14:34

摘要:

目的   比較研究炭疽病不同發(fā)病程度草莓根際微生物群落結(jié)構(gòu)并開展基因功能預測分析,為指導農(nóng)田管理及篩選草莓炭疽病拮抗菌提供理論依據(jù)和參考。

方法  采集設施栽培大棚中健康和不同發(fā)病程度的草莓植株根際土壤,利用Illumina Miseq測序比較分析不同發(fā)病程度對草莓根際細菌多樣性,根際細菌門、屬水平群落組成特征的影響。

結(jié)果  發(fā)病植株根際細菌多樣性顯著低于健康植株,其中輕度發(fā)病草莓根際細菌豐富度ACE降低了7.2%,而中度發(fā)病草莓根際細菌豐富度降低了11%。草莓根際土壤的優(yōu)勢菌群為變形菌門、放線菌門和擬桿菌門,不同發(fā)病程度的草莓根際土壤的細菌群落結(jié)構(gòu)發(fā)生了顯著改變,其中發(fā)病草莓顯著提高了根際土壤中芽孢菌屬和亞棲熱菌屬的相對豐度,而降低了與促生功能相關(guān)的黃桿菌屬和伯克氏菌屬的相對豐度。PICRUSt2分析表明,炭疽病顯著提高草莓根際細菌的細胞交流、細胞傳遞和分解,轉(zhuǎn)錄以及循環(huán)等功能,而降低了脂質(zhì)代謝和消化功能。

結(jié)論  本研究表明炭疽病顯著降低草莓根際細菌多樣性,并改變細菌群落結(jié)構(gòu),降低了促進草莓營養(yǎng)吸收細菌種類的相對豐度,改變了根際細菌功能特征,研究結(jié)果為指導草莓生產(chǎn)管理和篩選抗病微生物提供參考。

Abstract:

Objective  The aim of this study is to compare the rhizosphere microbial community structure and function of strawberry among difference degrees of anthracnose, which is crucial for guiding farmland management and screening useful strawberry anthracnose antagonistic resource.

Method  The strawberry rhizosphere soil among difference degrees of anthracnose in the same field was collected in a greenhouse for studying the rhizosphere bacterial diversity and richness at phylum and genus levels by using Illumina sequencing and PICRUSt2.

Result  The results showed that anthracnose decreased rhizosphere bacterial diversity, with the mild degrees of anthracnose decreased 7.2% (ACE) and the middle decreased 11%. The phyla Proteobacteria, Actinobacteria and Bacteroidetes dominated in all strawberry rhizosphere soil. The different degrees of anthracnose changed rhizosphere soil bacterial composition, with an increase of Bacillus. spp and Meiothermus. Spp, while a decreased of Flavobacterium and Burkholderia. The PICRUSt2 analysis showed that the occurrence of anthracnose disease increased cell communication, transport and catabolism, transcription, but decreased lipid metabolism and digestive system.

Conclusion  The strawberry anthracnose change rhizosphere bacterial composition, functional traits and decrease diversity. In addition, the strawberry anthracnose also decreases the relative abundance of bacterial taxa and enhances plant nutrient absorption.

圖  1   健康及不同發(fā)病程度草莓根際細菌組成(門水平)

每組處理柱旁不同字母表示差異顯著(P < 0.05, Tukey’s test)

Figure  1.   Relative average abundances of bacteria in healthy and infected strawberries (at phylum level)

圖  2   健康及不同發(fā)病程度草莓根際細菌組成(屬水平)

每組處理柱上不同字母表示差異顯著(P < 0.05, Tukey’s test)

Figure  2.   Relative average abundances of bacteria in healthy and infected strawberry (at genus level)

圖  3   健康及不同發(fā)病程度草莓根際細菌PCoA分析(OTU水平)

Figure  3.   Results of PCoA analysis based on weighted Fast UniFrac distance at OTU level

圖  4   不同發(fā)病程度草莓根際細菌功能變化分析 (一級功能層)

Figure  4.   Changes of bacterial function profiles of different samples examined using changes of bacterial function profiles of different samples examined using PICRUSt2 (hierarchy level 1)

圖  5   不同發(fā)病程度草莓根際細菌功能變化分析 (二級功能層)

Figure  5.   Changes of bacterial function profiles of different samples examined using Changes of bacterial function profiles of different samples examined using PIRCUSt2 (Hierarchy level 2)

表  1   健康及不同發(fā)病程度草莓根際細菌多樣性

Table  1   Effects of healthy and different infected stage strawberry on rhizosphere bacterial α diversity

處理代號
CodeOTUsShannonACEChao1 T0 4194 ± 276 a 6.92 ± 0.07 a 5492 ± 238 a 5502 ± 191 a T1 3842 ± 352 ab 6.74 ± 0.10 b 5092 ± 346 b 5109 ± 325 b T2 3639 ± 289 b 6.74 ± 0.08 b 4890 ± 335 b 4915 ± 367 b   注:表中數(shù)據(jù)為平均值 ± 標準差,同列不同字母表示差異顯著(P < 0.05)。T0健康草莓根際土壤,T1初始發(fā)病狀態(tài)草莓根際土壤,T2發(fā)病中期草莓根際土壤?! ?

表  2   不同處理間細菌群落差異性分析

Table  2   The bacterial composition difference among different treatments under long-term fertilization

組別
Group差異性
Difference 系數(shù)
Coefficient (R)顯著性
Significance (P) T0 vs T1 vs T2 0.6393 0.001 T0 vs T1 0.5037 0.003 T0 vs T2 0.6198 0.003 T1 vs T2 0.5651 0.003 [1]

World Health Organization. The state of food security and nutrition in the world 2018: building climate resilience for food security and nutrition[M]. Food & Agriculture Org. , 2018.

[2] 韓永超, 曾祥國, 向發(fā)云, 等. 草莓屬植物種質(zhì)資源對炭疽病抗性的離體評價[J]. 中國農(nóng)業(yè)科學, 2019, (20): 3585 ? 3594. [3] 趙玳琳, 何海永, 吳石平, 等. 棘孢木霉GYSW-6m1對草莓炭疽病的生防機制及其防病促生作用研究[J]. 中國生物防治學報, 2020, (4): 587 ? 595. [4]

Wang Q F, Jiang X, Guan D W, et al. Long-term fertilization changes bacterial diversity and bacterial communities in the maize rhizosphere of Chinese Mollisols[J]. Applied Soil Ecology, 2018, 125: 88 ? 96. doi: 10.1016/j.apsoil.2017.12.007

[5] 董利蘋, 曹 靖, 李先婷, 等. 不同耐鹽植物根際土壤鹽分的動態(tài)變化[J]. 生態(tài)學報, 2011, 31: 2813 ? 2821. [6]

Yuan J, Zhao J, Wen T, et al. Root exudates drive the soil-borne legacy of aboveground pathogen infection[J]. Microbiome, 2018, 6: 1 ? 12. doi: 10.1186/s40168-017-0383-2

[7]

Wang Q F, Ma M C, Jiang X, et al. Impact of 36?years of nitrogen fertilization on microbial community composition and soil carbon cycling-related enzyme activities in rhizospheres and bulk soils in northeast China[J]. Applied Soil Ecology, 2019, 136: 148 ? 157. doi: 10.1016/j.apsoil.2018.12.019

[8]

Berendsen R L, Pieterse C M, Bakker P A. The rhizosphere microbiome and plant health[J]. Trends in plant science, 2012, 17: 478 ? 486. doi: 10.1016/j.tplants.2012.04.001

[9]

Li C, Tian Q, Rahman M K, et al. Effect of anti-fungal compound phytosphingosine in wheat root exudates on the rhizosphere soil microbial community of watermelon[J]. Plant and Soil, 2020, 456: 223 ? 240. doi: 10.1007/s11104-020-04702-1

[10]

Rudrappa T, Czymmek K J, Paré P W, et al. Root-secreted malic acid recruits beneficial soil bacteria[J]. Plant physiology, 2008, 148: 1547 ? 1556. doi: 10.1104/pp.108.127613

[11] 吳 祥, 吉沐祥, 陳宏州, 等. 句容地區(qū)草莓炭疽病病原菌的鑒定及防治藥劑篩選[J]. 江蘇農(nóng)業(yè)學報, 2013, (6): 1510 ? 1513. [12] 韓國興, 禮 茜, 孫飛洲, 等. 杭州地區(qū)草莓炭疽病病原鑒定及其對多菌靈和乙霉威的抗藥性[J]. 浙江農(nóng)業(yè)科學, 2009, 6: 1169 ? 1172. doi: 10.3969/j.issn.0528-9017.2009.06.046 [13] 谷春艷, 王學峰, 蘇賢巖, 等. 解淀粉芽孢桿菌WH1G與氟啶胺協(xié)同防治草莓灰霉病[J]. 農(nóng)藥, 2017, (12): 932 ? 936. [14]

Han Y C, Zeng X G, Xiang F Y, et al. Carbendazim sensitivity in populations of Colletotrichum gloeosporioides complex infecting strawberry and yams in Hubei Province of China[J]. Journal of Integrative Agriculture, 2018, 17: 1391 ? 1400. doi: 10.1016/S2095-3119(17)61854-9

[15]

Nannipieri P, Ascher J, Ceccherini M, et al. Microbial diversity and soil functions[J]. European journal of soil science, 2003, 54: 655 ? 670. doi: 10.1046/j.1351-0754.2003.0556.x

[16]

Langille M G, Zaneveld J, Caporaso J G, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature biotechnology, 2013, 31: 814 ? 821. doi: 10.1038/nbt.2676

[17]

Wu Z, Hao Z, Sun Y, et al. Comparison on the structure and function of the rhizosphere microbial community between healthy and root-rot Panax notoginseng[J]. Applied Soil Ecology, 2016, 107: 99 ? 107. doi: 10.1016/j.apsoil.2016.05.017

[18] 肖 蓉, 曹秋芬, 聶園軍, 等. 基于高通量測序患炭疽病草莓根際與健康草莓根際細菌群落的比較研究[J]. 中國農(nóng)學通報, 2017, (11): 14 ? 20. [19]

Cheng W, Johnson D W, Fu S. Rhizosphere effects on decomposition: controls of plant species, phenology, and fertilization[J]. Soil Science Society of America Journal, 2003, 67: 1418 ? 1427. doi: 10.2136/sssaj2003.1418

[20]

Ai C, Liang G, Sun J, et al. Different roles of rhizosphere effect and long-term fertilization in the activity and community structure of ammonia oxidizers in a calcareous fluvo-aquic soil[J]. Soil Biology and Biochemistry, 2013, 57: 30 ? 42. doi: 10.1016/j.soilbio.2012.08.003

[21]

Zhou J, Jiang X, Zhou B K, et al. Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in northeast China[J]. Soil Biology & Biochemistry, 2016, 95: 135 ? 143.

[22]

Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7: 335 ? 336. doi: 10.1038/nmeth.f.303

[23]

Edgar R C, Haas B J, Clemente J C, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27: 2194 ? 2200. doi: 10.1093/bioinformatics/btr381

[24]

Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature methods, 2013, 10: 996 ? 998. doi: 10.1038/nmeth.2604

[25]

Schloter M, Nannipieri P, S?rensen S J, et al. Microbial indicators for soil quality[J]. Biology and Fertility of Soils, 2018, 54: 1 ? 10. doi: 10.1007/s00374-017-1248-3

[26] 鄧 曉, 李勤奮, 武春媛, 等. 健康香蕉(Musa paradisiaca)植株與枯萎病患病植株根區(qū)土壤細菌多樣性的比較研究[J]. 生態(tài)環(huán)境學報, 2015, (3): 402 ? 408. [27]

Gorissen A, van Overbeek L, van Elsas J. Pig slurry reduces the survival of Ralstonia solanacearum biovar 2 in soil[J]. Canadian Journal of Microbiology, 2004, 50: 587 ? 593. doi: 10.1139/w04-042

[28]

Qiu M, Zhang R, Xue C, et al. Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil[J]. Biology and Fertility of Soils, 2012, 48: 807 ? 816. doi: 10.1007/s00374-012-0675-4

[29]

Berdy J. Bioactive microbial metabolites[J]. The Journal of antibiotics, 2005, 58: 1 ? 26. doi: 10.1038/ja.2005.1

[30]

Lee S M, Kong H G, Song G C, et al. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease[J]. The ISME Journal, 2021, 15: 330 ? 347. doi: 10.1038/s41396-020-00785-x

[31]

Xun W, Zhao J, Xue C, et al. Significant alteration of soil bacterial communities and organic carbon decomposition by different long-term fertilization management conditions of extremely low-productivity arable soil in South China[J]. Environmental microbiology, 2016, 18: 1907 ? 1917. doi: 10.1111/1462-2920.13098

[32]

Dai H, Zang H, Zhao Y, et al. Linking bacterial community to aggregate fractions with organic amendments in a sandy soil[J]. Land Degradation & Development, 2019, 30: 1828 ? 1839.

[33]

Xu P, Liu Y, Zhu J, et al. Influence mechanisms of long-term fertilizations on the mineralization of organic matter in Ultisol[J]. Soil and Tillage Research, 2020, 201: 104594. doi: 10.1016/j.still.2020.104594

[34]

Li N, Li X, Zhang H J, et al. Microbial community and antibiotic resistance genes of biofilm on pipes and their interactions in domestic hot water system[J]. Science of The Total Environment, 2021, 767: 144364. doi: 10.1016/j.scitotenv.2020.144364

[35]

Huang X, Zhou X, Zhang J, et al. Highly connected taxa located in the microbial network are prevalent in the rhizosphere soil of healthy plant[J]. Biology and Fertility of Soils, 2019, 55: 299 ? 312. doi: 10.1007/s00374-019-01350-1

[36]

Stringlis I A, Yu K, Feussner K, et al. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health[J]. Proceedings of the National Academy of Sciences, 2018, 115: E5213 ? E5222.

[37]

Liu Y, Zhang N, Qiu M, et al. Enhanced rhizosphere colonization of beneficial Bacillus amyloliquefaciens SQR9 by pathogen infection[J]. FEMS microbiology letters, 2014, 353: 49 ? 56. doi: 10.1111/1574-6968.12406

[38]

Menon R R, Kumari S, Viver T, et al. Flavobacterium pokkalii sp. nov., a novel plant growth promoting native rhizobacteria isolated from pokkali rice grown in coastal saline affected agricultural regions of southern India, Kerala[J]. Microbiological Research, 2020, 240: 126533. doi: 10.1016/j.micres.2020.126533

[39]

Wang C, Huang Y, Yang X, et al. Burkholderia sp. Y4 inhibits cadmium accumulation in rice by increasing essential nutrient uptake and preferentially absorbing cadmium[J]. Chemosphere, 2020, 252: 126603. doi: 10.1016/j.chemosphere.2020.126603

[40]

You M, Fang S, Macdonald J, et al. Isolation and characterization of Burkholderia cenocepacia CR318, a phosphate solubilizing bacterium promoting corn growth[J]. Microbiological Research, 2020, 233: 126395. doi: 10.1016/j.micres.2019.126395

[41]

Liu D, Keiblinger K M, Schindlbacher A, et al. Microbial functionality as affected by experimental warming of a temperate mountain forest soil—A metaproteomics survey[J]. Applied Soil Ecology, 2017, 117: 196 ? 202.

相關(guān)知識

炭疽病,炭疽病如何治療,炭疽病的癥狀
糖尿病病友這樣吃草莓更健康!
吃草莓能降血糖嗎
草莓有什么營養(yǎng)?糖尿病人一天能吃多少草莓?
感染炭疽桿菌后有什么癥狀?炭疽桿菌該如何進行預防?
草莓6大養(yǎng)生功效 教您挑草莓
被草莓霸屏的季節(jié),糖尿病人如何健康吃草莓?
糖尿病人能不能吃草莓?糖友吃200克草莓的升糖有多高?
糖尿病人能否吃草莓?糖友吃200克草莓升糖量有多高?
三月草莓季,糖尿病患者怎么吃草莓穩(wěn)血糖?

網(wǎng)址: 炭疽病發(fā)病草莓與健康草莓根際細菌群落結(jié)構(gòu)及功能差異 http://m.u1s5d6.cn/newsview674783.html

推薦資訊