Typical Metabolic Characteristics and Potential Technical Approaches of Nutritional Regulation in Transition Dairy Cows: A Review
摘要: 圍產(chǎn)期是奶牛泌乳周期中的一個關(guān)鍵階段,奶牛處于多種營養(yǎng)素的負平衡狀態(tài),部分生理代謝功能紊亂,易發(fā)多種代謝性及其他疾病,嚴重威脅奶牛健康和高效生產(chǎn)。因此,奶牛圍產(chǎn)期的營養(yǎng)調(diào)控已成為研究熱點和重點?;诒菊n題組近年的研究積累,本文以奶牛圍產(chǎn)期營養(yǎng)生理過程為理論基礎(chǔ),以機體代謝葡萄糖的精準、高效供應(yīng)為核心目標,從瘤胃代謝調(diào)控、小腸淀粉高效利用和肝臟功能調(diào)控3個層次論述了奶牛圍產(chǎn)期營養(yǎng)調(diào)控的相關(guān)進展和技術(shù)思路,旨在為相關(guān)研究和制訂奶業(yè)營養(yǎng)對策提供參考。
Typical Metabolic Characteristics and Potential Technical Approaches of Nutritional Regulation in Transition Dairy Cows: A Review
Abstract: The negative balances of nutrients usually occur in transition dairy cows, which leads to physiological dysfunction and incidences of metabolic disorders and other diseases, decreasing the healthy status as well as limiting postpartum lactation performance. Hence, the transition period has been regarded as one of the most important phases in a lactation circle of dairy cows. Moreover, the regulation of nutritional metabolism in transition dairy cows has long been a research focus. Based on the research accumulation of our group in recent years, as well as on the theoretical basis of nutritional physiological process, we discussed the research advances in the nutritional regulation of transition dairy cows, including regulation of rumen metabolism, efficient utilization of intestinal starch and the regulation of liver function in this review. The precise and efficient supply of metabolizable glucose is the core goal in this regulatory system, aiming at providing scientific and technical references for associated studies and dairy practices.
Key words:nutritional regulation metabolizable protein metabolizable glucose AMPK signaling pathway transition dairy cows
奶牛圍產(chǎn)期包括產(chǎn)前3周和產(chǎn)后3周,此階段奶牛營養(yǎng)生理和代謝模式較為特殊,神經(jīng)內(nèi)分泌改變[1],營養(yǎng)素攝入不足且利用率低,主要營養(yǎng)素(脂質(zhì)、蛋白質(zhì)、鈣、磷等)的體貯動員顯著增強[2-3],各器官代謝和免疫功能下降,面臨的應(yīng)激因素增加(分娩、飼糧轉(zhuǎn)換、代謝應(yīng)激、氧化應(yīng)激和環(huán)境應(yīng)激等)[4],奶牛防御有害微生物侵襲的屏障功能減弱[4-5],極易遭受各種代謝性疾病(脂肪肝、酮病、乳熱病等)和微生物疾病(細菌性乳房炎、細菌性子宮炎等)的困擾,給奶業(yè)造成巨大損失[6-8]。因此,研究奶牛圍產(chǎn)期營養(yǎng)過程的生理生化機理,制訂有效的營養(yǎng)調(diào)控技術(shù)方案和飼養(yǎng)管理規(guī)程,對保障奶牛健康和泌乳性能的持續(xù)高效發(fā)揮,促進奶業(yè)可持續(xù)發(fā)展具有重要意義。
1 典型代謝:理論基礎(chǔ)
解析關(guān)鍵營養(yǎng)素攝入、消化、吸收、轉(zhuǎn)運、代謝、轉(zhuǎn)化、利用和排泄的機制網(wǎng)絡(luò),闡明主要代謝應(yīng)激和疾病的發(fā)生機理,是調(diào)控奶牛圍產(chǎn)期營養(yǎng)高效利用和健康的理論基礎(chǔ)。以脂肪肝和酮病為例,能量負平衡(negative energy balance, NEB)導致體脂動員,大量未酯化脂肪酸(non-esterified fatty acids, NEFA)進入肝臟代謝供能,主要有3條代謝通路[9-11]:1)完全氧化,生成CO2和H2O,并釋放大量ATP,高效供能;2)不完全氧化生成酮體,主要是β-羥基丁酸(β-hydroxybutyric acid, BHBA),供能效率低,且酮體積累極易誘發(fā)奶牛酮??;3)經(jīng)酯化反應(yīng)生成甘油三酯(triglyceride, TG),若TG不能以極低密度脂蛋白(very low density lipoprotein, VLDL)形式轉(zhuǎn)運出肝臟,則導致肝細胞脂肪浸潤或脂肪肝的發(fā)生[12-16]。因此,為降低脂肪肝和酮病發(fā)生的風險,可通過下列途徑加以調(diào)控:1)促進NEFA的完全氧化,可通過增加肝臟肉毒堿含量,促進其限速酶肉毒堿棕櫚酰轉(zhuǎn)移酶(CPT1)的表達來實現(xiàn)[10-11];2)降低BHBA合成,可通過調(diào)控其關(guān)鍵酶β-羥基-β-甲基戊二酰輔酶A(β-hydroxy-β-methylglutaryl-CoA, HMG-CoA)和HMG-CoA還原酶基因的表達和分泌來實現(xiàn)[17];3)促進VLDL的合成,將過量TG轉(zhuǎn)運出肝臟[18-22]。
添加一些營養(yǎng)調(diào)控劑(如膽堿、丙三醇和維生素E等),可增強奶牛圍產(chǎn)期抗氧化和免疫功能,并降低代謝性疾病的發(fā)生,提高產(chǎn)后泌乳和繁殖性能[1, 5, 23-26]。Lean等[27]系統(tǒng)綜述了奶牛圍產(chǎn)期營養(yǎng)需要及其調(diào)控的研究進展和技術(shù)原理,并提出了奶牛圍產(chǎn)期代謝性疾病發(fā)病率的限值和調(diào)控目標(表 1),可用于指導牧場奶牛圍產(chǎn)期營養(yǎng)和技術(shù)管理。

2 技術(shù)思路
奶牛從停乳到泌乳經(jīng)歷復雜的生理生化適應(yīng)和代謝調(diào)控機制,此過渡期是神經(jīng)內(nèi)分泌、機體代謝信號、消化道微生物及其代謝產(chǎn)物、動物內(nèi)部和外部應(yīng)激及各類病原共同調(diào)控的結(jié)果[6, 28-30]。關(guān)于圍產(chǎn)期奶牛群體監(jiān)測、營養(yǎng)需要、代謝調(diào)控和健康干預等已有一些經(jīng)典綜述[23, 27, 31-34]。結(jié)合本課題組歷年研究基礎(chǔ),以下將圍繞奶牛圍產(chǎn)期能量代謝,兼顧蛋白質(zhì)代謝,簡述奶牛圍產(chǎn)期能量和蛋白質(zhì)代謝調(diào)控的技術(shù)思路。
本課題組以提高飼糧能量的總體利用率為核心,以提高機體代謝葡萄糖(metabolizable glucose,MG)供應(yīng)為主要技術(shù)思路,主要研究內(nèi)容(圖 1)包括:1)瘤胃健康與高效發(fā)酵的生理機制和綜合調(diào)控;2)小腸營養(yǎng)素(主要是淀粉)高效利用的科學基礎(chǔ)及調(diào)控技術(shù);3)肝臟能量代謝和高效轉(zhuǎn)化的通路解析及營養(yǎng)調(diào)控;4)奶牛飼料數(shù)據(jù)庫建設(shè)、營養(yǎng)評估技術(shù)體系和相關(guān)軟件的研發(fā)。為平衡瘤胃和小腸碳水化合物的合理分配和能量的高效轉(zhuǎn)化,本課題組整合系列研究成果,提出反芻動物碳水化合物平衡指數(shù)(carbohydrate balance index, CBI)的概念,計算公式為:CBI=peNDF/RDS,其中peNDF表示物理有效中性洗滌纖維(physically effective neutral detergent fiber),目前建議采用peNDF8.0,RDS表示瘤胃可降解淀粉(rumen degradable starch)。關(guān)于不同長度peNDF在CBI和奶牛生理中的貢獻度,仍需通過研究進行量化[35-37]。

2.1 調(diào)控瘤胃微生態(tài),促進瘤胃養(yǎng)分高效轉(zhuǎn)化和利用
瘤胃內(nèi)環(huán)境穩(wěn)態(tài)對奶牛機體能量、蛋白質(zhì)和其他營養(yǎng)素的供應(yīng)至關(guān)重要,乙酸是乳脂合成的重要底物和調(diào)控因子;丙酸是奶牛肝臟糖異生的主要底物,而葡萄糖不僅是奶牛生命活動的主要能量來源,還是乳糖合成的前體物質(zhì);微生物蛋白(MCP)是小腸蛋白質(zhì)的重要組成部分,與過瘤胃蛋白質(zhì)(rumen undegraded protein,RUP)和內(nèi)源蛋白質(zhì)(endogenous crude protein, ECP)共同構(gòu)成奶牛機體代謝蛋白質(zhì)(metabolizable protein,MP)來源。奶牛圍產(chǎn)期瘤胃微生物區(qū)系發(fā)生變化,瘤胃功能有所下降。Pitta等[38]比較研究了初產(chǎn)和經(jīng)產(chǎn)奶牛圍產(chǎn)期瘤胃微生物組的動態(tài)變化,發(fā)現(xiàn)在所有菌群中,擬桿菌屬(Bacteroidetes)和厚壁菌門(Firmicutes)的豐度最高,奶牛分娩前后Bacteroidetes與Firmicutes的比例由6 : 1增加到12 : 1,這可能與奶牛機體代謝生理和飼糧轉(zhuǎn)換等有關(guān)。隨泌乳啟動,奶牛由干奶飼糧(高粗飼糧)轉(zhuǎn)入泌乳飼糧(高精飼糧),瘤胃牛鏈球菌(Streptococcus bovis)和乳酸桿菌(Lactobacillus)等乳酸生成菌的數(shù)量顯著增加,而反芻獸新月形單胞菌(Selenomonas ruminantium)和埃氏巨型球菌(Megasphaera elsdenii)的數(shù)量則顯著減少[39],這可能導致:1)丙酸產(chǎn)量減少,肝臟糖異生底物不足,大量生糖氨基酸用于糖異生,造成氨基酸“浪費”,加劇能量和蛋白質(zhì)的負平衡;2)乳酸生成量增加,降低瘤胃內(nèi)pH,誘發(fā)酸中毒,損傷瘤胃上皮,并降低MCP合成量;3)瘤胃能量和蛋白質(zhì)利用轉(zhuǎn)化和輸出效率下降,進而刺激機體脂肪和蛋白質(zhì)動員,加劇肝臟代謝負擔,并增加酮病和脂肪肝等疾病的發(fā)生風險;4)乳腺泌乳的能量和底物不足,降低奶牛產(chǎn)后泌乳性能。因此,保障奶牛圍產(chǎn)期(尤其是圍產(chǎn)后期)瘤胃健康和能量高效產(chǎn)出,對維持奶牛機體健康和產(chǎn)后泌乳性能具有重要意義。
實現(xiàn)瘤胃和小腸碳水化合物營養(yǎng)的最適分配,在保障瘤胃健康的前提下,提高瘤胃養(yǎng)分高效轉(zhuǎn)化和利用效率,是奶牛圍產(chǎn)期瘤胃代謝調(diào)控的重要技術(shù)思路,CBI體系為實現(xiàn)這一目標提供了技術(shù)參考。關(guān)于CBI的研究進展和實踐應(yīng)用,可參考本課題組的部分研究結(jié)果[36-37, 40-46]。瘤胃內(nèi)環(huán)境和營養(yǎng)代謝的可調(diào)控性已毋庸置疑,且相關(guān)調(diào)控措施較多(圖 1)。與其他生理階段相比,奶牛圍產(chǎn)期瘤胃代謝調(diào)控的研究明顯偏少。王曉旭[47]利用體外復合培養(yǎng)技術(shù)研究發(fā)現(xiàn),釀酒酵母(Saccharomyces cerevisiae)+產(chǎn)朊假絲酵母(Candida utilis)+伯頓畢赤酵母(Burton pichia pastoris)這一組合利用乳酸生成丙酸的能力最強,并可促進Selenomonas ruminantium和Megasphaera elsdenii生成丙酸;采用復合微生態(tài)制劑分別飼喂圍產(chǎn)期健康和酮病奶牛后發(fā)現(xiàn)其可調(diào)控瘤胃微生物區(qū)系,提高瘤胃短鏈脂肪酸(SCFA)和血液葡萄糖濃度,降低血液BHBA濃度,提高血液葡萄糖濃度,且對奶牛無負面影響。
2.2 增強小腸消化和吸收功能,提高外源葡萄糖和MP供應(yīng)量
進入小腸的營養(yǎng)物質(zhì),在一系列消化酶的作用下降解為小分子物質(zhì),通過自由擴散或相關(guān)轉(zhuǎn)運載體的協(xié)助被吸收,經(jīng)血液循環(huán)和代謝轉(zhuǎn)化被機體各組織利用。胰腺可分泌多種消化酶,如α-淀粉酶、胰蛋白酶和胰脂肪酶,在小腸多種營養(yǎng)物質(zhì)的消化過程中發(fā)揮重要作用。奶牛飼糧淀粉在小腸消化吸收的供能效率顯著高于瘤胃,但過瘤胃淀粉(rumen escape starch, RES)的小腸消化率不超過70%,其限制性因素之一是胰腺α-淀粉酶分泌不足[48-51]。
圍繞此關(guān)鍵科學問題,本課題組以奶山羊和青年奶牛為試驗對象,結(jié)合胰腺組織孵育和原代細胞培養(yǎng)技術(shù),系統(tǒng)研究了亮氨酸(Leu)、苯丙氨酸(Phe)等功能性氨基酸對反芻動物胰腺消化酶表達和分泌的影響及信號傳導網(wǎng)絡(luò)[35, 37]。于紅霞[49]研究發(fā)現(xiàn),十二指腸灌注3或6 g Leu可提高奶山羊胰腺α-淀粉酶分泌量,且不依賴于胰島素;進一步研究發(fā)現(xiàn),Phe亦可調(diào)控奶山羊胰腺外分泌功能,增強小腸消化酶活性,進而提高淀粉和其他營養(yǎng)素的消化率,Leu和Phe主要通過激素和哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)信號通路調(diào)控奶山羊胰腺蛋白質(zhì)合成[51-53]。在此基礎(chǔ)上,我們聯(lián)用荷斯坦青年牛多插管灌注、胰腺組織孵育和胰腺腺泡細胞原代培養(yǎng)等技術(shù),初步闡明Phe、Leu、異亮氨酸(Ile)和纈氨酸(Val)調(diào)控胰腺酶表達和分泌的機制,并構(gòu)建了調(diào)控網(wǎng)絡(luò)[48, 54-56],目前正在探究奶牛胰腺對功能性氨基酸的特異性感知和響應(yīng)網(wǎng)絡(luò)。
集成CBI體系和奶畜胰腺外分泌功能的綜合調(diào)控技術(shù),可保障瘤胃健康和高效發(fā)酵,提高小腸RES和其他營養(yǎng)素的消化率,我們初步建立了一種優(yōu)化反芻家畜飼糧營養(yǎng)素總體利用率的技術(shù)思路,該體系對小腸營養(yǎng)物質(zhì)吸收層次的影響仍需深究。奶牛圍產(chǎn)期高強度的脂肪代謝導致機體自由基蓄積,易誘發(fā)氧化應(yīng)激,因此通過在飼糧中添加脂肪緩解NEB并不適當;在保證飼糧營養(yǎng)均衡和小腸氨基酸平衡的前提下,通過飼料加工工藝或其他措施適當增加RES和RUP含量,并輔以適量過瘤胃氨基酸(如Leu、Phe),或可成為緩解奶牛圍產(chǎn)期NEB和蛋白質(zhì)負平衡(negative protein balance, NPB)的新途徑。當然,上述功能性氨基酸能否調(diào)控圍產(chǎn)期奶牛的胰腺外分泌功能,尚需研究支持。
2.3 保障肝臟健康,提高肝臟能量代謝和營養(yǎng)輸出
肝臟是奶牛的能量代謝樞紐和多種重要蛋白質(zhì)的合成場所,如白蛋白和VLDL。奶牛機體的葡萄糖約70%源于肝糖異生,葡萄糖和脂類在肝細胞氧化產(chǎn)生的大量ATP是奶牛維持生長、繁殖、泌乳和其他生命活動的重要能量來源。因此,保障肝臟健康,提高其能量代謝和營養(yǎng)輸出效率,是奶牛圍產(chǎn)期營養(yǎng)調(diào)控研究的重點領(lǐng)域之一。
奶牛圍產(chǎn)期肝臟健康和代謝面臨如下主要問題[5, 57-58]:1)脂質(zhì)完全氧化能力有限,VLDL合成不足,肝臟TG蓄積,造成肝細胞脂肪浸潤或脂肪肝;2)脂質(zhì)代謝異常旺盛,自由基的產(chǎn)生超出其清除能力,肝細胞遭受氧化應(yīng)激,造成氧化損傷;3)生糖前體物不足,且肝細胞生糖能力下降,造成機體MG負平衡;4)在神經(jīng)內(nèi)分泌和多種因素的綜合調(diào)控下,肝細胞合成相關(guān)代謝酶和活性物質(zhì)的能力下降;5)肝細胞炎癥反應(yīng),一些急性期蛋白(如腫瘤壞死因子α)抑制肝細胞功能。造成上述問題的根本原因是奶牛圍產(chǎn)期主要營養(yǎng)素的負平衡,尤其是能量和蛋白質(zhì)。因此,調(diào)控肝臟健康可通過2條途徑實現(xiàn):1)促進奶牛營養(yǎng)攝入,提高飼糧營養(yǎng)的總體利用率,緩解NEB和NPB,間接促進肝臟健康;2)調(diào)控肝臟能量和脂質(zhì)代謝的核心通路,減少肝臟脂質(zhì)沉積,降低肝細胞氧化應(yīng)激和炎癥反應(yīng),增強肝臟功能[10, 59]。
研究表明,腺苷一磷酸激活的蛋白激酶(adenosine 5’-monophosphate-activated protein kinase, AMPK)是細胞能量代謝的開關(guān),在肝細胞能量和脂質(zhì)代謝中發(fā)揮核心作用[17]。AMPK是一種高度保守的絲氨酸(Ser)/蘇氨酸(Thr)蛋白激酶,由1個催化亞基α和2個調(diào)節(jié)亞基(β和γ)組成,受AMP/ATP、上游激酶[如肝臟激酶B1(liver kinase B1,LKB1)]和激素(如瘦素)等因素的調(diào)控[60-62]。當肝細胞AMPK被激活時,其下游活性蛋白的Ser或Thr殘基被磷酸化,進而提高或降低其表達,抑制肝臟脂類合成,促進脂類和碳水化合物的氧化供能(圖 2)。有研究證明,瘦素和脂聯(lián)素均可激活下丘腦AMPK,提高嚙齒類動物的采食量[63-65],而注射腦腸肽可激活大鼠下丘腦AMPK,不利于采食[66-67],但瘦素和腦腸肽能否通過激活和抑制下丘腦AMPK調(diào)控奶牛圍產(chǎn)期干物質(zhì)采食量(dry matter intake,DMI)尚未見報道。AMPK在奶牛上的相關(guān)研究多集中于乳腺和脂肪組織的能量及脂質(zhì)代謝[68-70],肝臟AMPK的研究較少。Deng等[71]研究發(fā)現(xiàn),BHBA可激活奶牛原代肝細胞AMPK,促進脂質(zhì)氧化,抑制脂質(zhì)合成。據(jù)此推斷,AMPK在奶牛肝臟碳水化合物和脂質(zhì)代謝中發(fā)揮重要作用,其網(wǎng)絡(luò)有待解析,且現(xiàn)有營養(yǎng)調(diào)控措施是否通過AMPK發(fā)揮效應(yīng)亦不明確。

因此,明晰AMPK在奶牛圍產(chǎn)期下丘腦采食調(diào)控和肝臟糖脂代謝中的作用及機制,篩選可激活肝臟AMPK并調(diào)節(jié)相關(guān)激素分泌的飼料添加劑和(或)活性物質(zhì),促進肝臟營養(yǎng)代謝和轉(zhuǎn)化,理論上可有效緩解奶牛圍產(chǎn)期營養(yǎng)素負平衡,保障胎兒和母體健康,提高產(chǎn)后泌乳性能。
3 小結(jié)
奶牛圍產(chǎn)期營養(yǎng)素負平衡嚴重威脅其整個泌乳周期的健康和高效生產(chǎn),而對DMI的調(diào)控相對較難,因此,保障瘤胃健康和營養(yǎng)高效轉(zhuǎn)化,適當增加RES的供應(yīng)量,同時促進胰腺α-淀粉酶的合成和分泌,并調(diào)控肝臟健康和營養(yǎng)代謝,是奶牛圍產(chǎn)期營養(yǎng)調(diào)控的重要技術(shù)途徑。
參考文獻
[1]ZEBELI Q, GHAREEB K, HUMER E, et al. Nutrition, rumen health and inflammation in the transition period and their role on overall health and fertility in dairy cows[J]. Research in Veterinary Science, 2015, 103: 126-136. DOI:10.1016/j.rvsc.2015.09.020
[2]GRUMMER R R. Nutritional and management strategies for the prevention of fatty liver in dairy cattle[J]. The Veterinary Journal, 2008, 176(1): 10-20. DOI:10.1016/j.tvjl.2007.12.033
[3]LOOR J J, EVERTS R E, BIONAZ M, et al. Nutrition-induced ketosis alters metabolic and signaling gene networks in liver of periparturient dairy cows[J]. Physiological Genomics, 2007, 32(1): 105-116. DOI:10.1152/physiolgenomics.00188.2007
[4]SORDILLO L M, MAVANGIRA V. The nexus between nutrient metabolism, oxidative stress and inflammation in transition cows[J]. Animal Production Science, 2014, 54(9): 1204-1214.
[5]SORDILLO L M. Nutritional strategies to optimize dairy cattle immunity[J]. Journal of Dairy Science, 2016, 99(6): 4967-4982. DOI:10.3168/jds.2015-10354
[6]ESPOSITO G, IRONS P C, WEBB E C, et al. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows[J]. Animal Reproduction Science, 2014, 144(3/4): 60-71.
[7]LEBLANC S. Monitoring metabolic health of dairy cattle in the transition period[J]. Journal of Reproduction and Development, 2010, 56(S): S29-S35. DOI:10.1262/jrd.1056S29
[8]MULLIGAN F J, DOHERTY M L. Production diseases of the transition cow[J]. The Veterinary Journal, 2008, 176(1): 3-9. DOI:10.1016/j.tvjl.2007.12.018
[9]SUN F, CAO Y, CAI C, et al. Regulation of nutritional metabolism in transition dairy cows:energy homeostasis and health in response to post-ruminal choline and methionine[J]. PLoS ONE, 2016, 11(8): e0160659. DOI:10.1371/journal.pone.0160659
[10]孫菲菲, 曹陽春, 李生祥, 等. 膽堿對奶牛圍產(chǎn)期代謝的調(diào)控[J]. 動物營養(yǎng)學報, 2014, 26(1): 26-33.
[11]GOSELINK R M A, VAN BAAL J, WIDJAJA H C A, et al. Effect of rumen-protected choline supplementation on liver and adipose gene expression during the transition period in dairy cattle[J]. Journal of Dairy Science, 2013, 96(2): 1102-1116. DOI:10.3168/jds.2012-5396
[12]ZARRIN M, GROSSEN-R?STI L, BRUCKMAIER R M, et al. Elevation of blood β-hydroxybutyrate concentration affects glucose metabolism in dairy cows before and after parturition[J]. Journal of Dairy Science, 2017, 100(3): 2323-2333. DOI:10.3168/jds.2016-11714
[13]ABDELLI A, RABOISSON D, KAIDI R, et al. Elevated non-esterified fatty acid and β-hydroxybutyrate in transition dairy cows and their association with reproductive performance and disorders:A meta-analysis[J]. Theriogenology, 2017, 93: 99-104. DOI:10.1016/j.theriogenology.2017.01.030
[14]GERSPACH C, IMHASLY S, GUBLER M, et al. Altered plasma lipidome profile of dairy cows with fatty liver disease[J]. Research in Veterinary Science, 2017, 110: 47-59. DOI:10.1016/j.rvsc.2016.10.001
[15]SCH?FERS S, VON SOOSTEN D, MEYER U, et al. Influence of conjugated linoleic acid and vitamin E on performance, energy metabolism, and change of fat depot mass in transitional dairy cows[J]. Journal of Dairy Science, 2017, 100(4): 3193-3208. DOI:10.3168/jds.2016-11882
[16]ZOM R L G, VAN BAAL J, GOSELINK R M A, et al. Effect of rumen-protected choline on performance, blood metabolites, and hepatic triacylglycerols of periparturient dairy cattle[J]. Journal of Dairy Science, 2011, 94(8): 4016-4027. DOI:10.3168/jds.2011-4233
[17]LEHNINGER A L, NELSON D L, COX M M. Lehninger principles of biochemistry[M]. 6th ed. New York, NY: W.H.Freeman and Company, 2005.
[18]張加力. 重組載脂蛋白B100對奶牛脂肪代謝的調(diào)控作用[D]. 博士學位論文. 長春: 吉林大學, 2012.
[19]BERNABUCCI U, RONCHI B, BASIRICò L, et al. Abundance of mRNA of apolipoprotein B100, apolipoprotein E, and microsomal triglyceride transfer protein in liver from periparturient dairy cows[J]. Journal of Dairy Science, 2004, 87(9): 2881-2888. DOI:10.3168/jds.S0022-0302(04)73418-9
[20]ELEK P, GAáL T, HUSVéTH F. Influence of rumen-protected choline on liver composition and blood variables indicating energy balance in periparturient dairy cows[J]. Acta Veterinaria Hungarica, 2013, 61(1): 59-70. DOI:10.1556/AVet.2012.053
[21]LI X W, GUAN Y, LI Y, et al. Effects of insulin-like growth factor-1 on the assembly and secretion of very low-density lipoproteins in cow hepatocytes in vitro[J]. General and Comparative Endocrinology, 2016, 226: 82-87. DOI:10.1016/j.ygcen.2015.04.001
[22]LIU L, LI X W, LI Y, et al. Effects of nonesterified fatty acids on the synthesis and assembly of very low density lipoprotein in bovine hepatocytes in vitro[J]. Journal of Dairy Science, 2014, 97(3): 1328-1335. DOI:10.3168/jds.2013-6654
[23]SHAHSAVARI A, D'OCCHIO M, AL JASSIM R. The role of rumen-protected choline in hepatic function and performance of transition dairy cows[J]. The British Journal of Nutrition, 2016, 116(1): 35-44. DOI:10.1017/S0007114516001641
[24]王建, 孫鵬, 卜登攀, 等. 圍產(chǎn)期奶牛免疫抑制發(fā)生原因及其緩解的營養(yǎng)對策[J]. 動物營養(yǎng)學報, 2014, 26(12): 3579-3586. DOI:10.3969/j.issn.1006-267x.2014.12.005
[25]WHITE H M, CARVALHO E R, KOSER S L, et al. Short communication:regulation of hepatic gluconeogenic enzymes by dietary glycerol in transition dairy cows[J]. Journal of Dairy Science, 2016, 99(1): 812-817. DOI:10.3168/jds.2015-9953
[26]劉大森, 姜明明. 圍產(chǎn)期奶牛健康指標體系和營養(yǎng)代謝研究進展[J]. 飼料工業(yè), 2015, 36(8): 1-4.
[27]LEAN I J, VAN SAUN R, DEGARIS P J. Energy and protein nutrition management of transition dairy cows[J]. Veterinary Clinics of North America:Food Animal Practice, 2013, 29(2): 337-366. DOI:10.1016/j.cvfa.2013.03.005
[28]DENG Q, ODHIAMBO J F, FAROOQ U, et al. Intravaginal probiotics modulated metabolic status and improved milk production and composition of transition dairy cows[J]. Journal of Animal Science, 2016, 94(2): 760-770. DOI:10.2527/jas.2015-9650
[29]AMETAJ B N, ZHANG G S, DERVISHI E, et al. Targeted metabolomics reveals multiple metabolite alterations in the urine of transition dairy cows preceding the incidence of lameness[J]. Journal of Animal Science, 2016, 94: 72-73.
[30]CALAMARI L, FERRARI A, MINUTI A, et al. Assessment of the main plasma parameters included in a metabolic profile of dairy cow based on fourier transform mid-infrared spectroscopy:preliminary results[J]. BMC Veterinary Research, 2016, 12(1): 4. DOI:10.1186/s12917-015-0621-4
[31]ROCHE J R, BELL A W, OVERTON T R, et al. Nutritional management of the transition cow in the 21st century-a paradigm shift in thinking[J]. Animal Production Science, 2013, 53(9): 1000-1023.
[32]BERTONI G, TREVISI E. Use of the liver activity index and other metabolic variables in the assessment of metabolic health in dairy herds[J]. Veterinary Clinics of North America:Food Animal Practice, 2013, 29(2): 413-431. DOI:10.1016/j.cvfa.2013.04.004
[33]INGVARTSEN K L, MOYES K. Nutrition, immune function and health of dairy cattle[J]. Animal, 2013, 7(S1): 112-122. DOI:10.1017/S175173111200170X
[34]RETAMAL P M. Nutritional management of the prepartum dairy cow[M]//RISCO C A, RETAMAL P M. Dairy production medicine. Hoboken: John Wiley & Sons, Inc, 2011: 7-17.
[35]姚軍虎, 曹陽春, 蔡傳江. 奶畜能量代謝調(diào)控機理與措施[J]. 飼料工業(yè), 2015, 36(17): 1-7.
[36]姚軍虎, 李飛, 李發(fā)弟, 等. 反芻動物有效纖維評價體系及需要量[J]. 動物營養(yǎng)學報, 2014, 26(10): 3168-3174. DOI:10.3969/j.issn.1006-267x.2014.10.031
[37]姚軍虎. 反芻動物碳水化合物高效利用的綜合調(diào)控[J]. 飼料工業(yè), 2013, 34(17): 1-12.
[38]PITTA D W, KUMAR S, VECCHIARELLI B, et al. Temporal dynamics in the ruminal microbiome of dairy cows during the transition period[J]. Journal of Animal Science, 2014, 92(9): 4014-4022. DOI:10.2527/jas.2014-7621
[39]WANG X X, LI X B, ZHAO C X, et al. Correlation between composition of the bacterial community and concentration of volatile fatty acids in the rumen during the transition period and ketosis in dairy cows[J]. Applied and Environmental Microbiology, 2012, 78(7): 2386-2392. DOI:10.1128/AEM.07545-11
[40]徐明. 反芻動物瘤胃健康和碳水化合物能量利用效率的營養(yǎng)調(diào)控[D]. 博士學位論文. 楊凌: 西北農(nóng)林科技大學, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10712-2008037102.htm
[41]杜莎. 日糧碳水化合物平衡指數(shù)對山羊消化道酶活性和養(yǎng)分瘤胃降解率的影響[D]. 碩士學位論文. 楊凌: 西北農(nóng)林科技大學, 2008. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1284452
[42]趙向輝. 日糧peNDF水平對山羊咀嚼活動、瘤胃發(fā)酵和養(yǎng)分消化率的影響[D]. 碩士學位論文. 楊凌: 西北農(nóng)林科技大學, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10712-2010050337.htm
[43]趙向輝. 日糧非纖維性碳水化合物對人工瘤胃發(fā)酵、微生物合成和纖維分解菌菌群的影響[D]. 博士學位論文. 楊凌: 西北農(nóng)林科技大學, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10712-1013150014.htm
[44]高洋. 黑麥草NDF組成及粒度對山羊采食行為、瘤胃發(fā)酵和瘤胃養(yǎng)分降解動力學的影響[D]. 碩士學位論文. 楊凌: 西北農(nóng)林科技大學, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10712-1011404133.htm
[45]李飛. 奶山羊亞急性瘤胃酸中毒模型構(gòu)建與奶牛日糧CBI的優(yōu)化[D]. 博士學位論文. 楊凌: 西北農(nóng)林科技大學, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10712-1014421086.htm
[46]劉南南. 日糧碳水化合物平衡指數(shù)和延胡索酸對山羊瘤胃發(fā)酵、微生物區(qū)系和甲烷產(chǎn)生的影響[D]. 碩士學位論文. 楊凌: 西北農(nóng)林科技大學, 2014. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=9066997
[47]王曉旭. 圍產(chǎn)期奶牛瘤胃微生物區(qū)系的變化及微生態(tài)制劑的調(diào)控作用[D]. 博士學位論文. 長春: 吉林大學, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10183-1012365842.htm
[48]劉燁. 十二指腸灌注亮氨酸對奶牛胰腺外分泌功能及血液指標的影響[D]. 碩士學位論文. 楊凌: 西北農(nóng)林科技大學, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10712-1013345500.htm
[49]于紅霞. 十二指腸灌注亮氨酸對奶山羊胰腺外分泌功能的影響[D]. 碩士學位論文. 楊凌: 西北農(nóng)林科技大學, 2011.
[50]于志鵬. 苯丙氨酸和亮氨酸對山羊胰腺發(fā)育和外分泌功能的調(diào)控研究[D]. 博士學位論文. 楊凌: 西北農(nóng)林科技大學, 2013.
[51]YU Z P, XU M, YAO J H, et al. Regulation of pancreatic exocrine secretion in goats:differential effects of short-and long-term duodenal phenylalanine treatment[J]. Journal of Animal Physiology and Animal Nutrition, 2013, 97(3): 431-438. DOI:10.1111/jpn.2013.97.issue-3
[52]YU Z P, XU M, LIU K, et al. Leucine markedly regulates pancreatic exocrine secretion in goats[J]. Journal of Animal Physiology and Animal Nutrition, 2014, 98(1): 169-177. DOI:10.1111/jpn.2014.98.issue-1
[53]YU Z P, XU M, WANG F, et al. Effect of duodenal infusion of leucine and phenylalanine on intestinal enzyme activities and starch digestibility in goats[J]. Livestock Science, 2014, 162: 134-140. DOI:10.1016/j.livsci.2014.01.023
[54]劉燁, 劉凱, 徐明, 等. 十二指腸灌注亮氨酸對奶牛胰腺淀粉酶分泌的影響[J]. 動物營養(yǎng)學報, 2013, 25(8): 1785-1790.
[55]劉凱. 亮氨酸和異亮氨酸對奶畜胰腺外分泌功能的影響及調(diào)控機理研究[D]. 博士學位論文. 楊凌: 西北農(nóng)林科技大學, 2017.
[56]LIU K, LIU Y, LIU S M, et al. Relationships between leucine and the pancreatic exocrine function for improving starch digestibility in ruminants[J]. Journal of Dairy Science, 2015, 98(4): 2576-2582. DOI:10.3168/jds.2014-8404
[57]杜兵耀, 馬晨, 楊開倫, 等. 圍產(chǎn)期奶牛的生理特點及營養(yǎng)代謝特征研究進展[J]. 乳業(yè)科學與技術(shù), 2016, 39(1): 14-18.
[58]VAN SAUN R J, SNIFFEN C J. Transition cow nutrition and feeding management for disease prevention[J]. Veterinary Clinics of North America:Food Animal Practice, 2014, 30(3): 689-719. DOI:10.1016/j.cvfa.2014.07.009
[59]孫菲菲, 曹陽春, 姚軍虎. 奶牛圍產(chǎn)期葡萄糖營養(yǎng)平衡及其調(diào)控研究進展[J]. 飼料工業(yè), 2013, 34(15): 46-50.
[60]HARDIE D G, ROSS F A, HAWLEY S A. AMPK:a nutrient and energy sensor that maintains energy homeostasis[J]. Nature Reviews Molecular Cell Biology, 2012, 13(4): 251-262. DOI:10.1038/nrm3311
[61]STEINBERG G R, WATT M J, FEBBRAIO M A. Cytokine Regulation of AMPK signalling[J]. Frontiers in Bioscience, 2008, 14: 1902-1916.
[62]WANG Y, LIANG Y, VANHOUTTE P M. SIRT1 and AMPK in regulating mammalian senescence:a critical review and a working model[J]. FEBS Letters, 2011, 585(7): 986-994. DOI:10.1016/j.febslet.2010.11.047
[63]KUBOTA N, YANO W, KUBOTA T, et al. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake[J]. Cell Metabolism, 2007, 6(1): 55-68. DOI:10.1016/j.cmet.2007.06.003
[64]MINOKOSHI Y, SHIUCHI T, LEE S, et al. Role of hypothalamic AMP-kinase in food intake regulation[J]. Nutrition, 2008, 24(9): 786-790. DOI:10.1016/j.nut.2008.06.002
[65]MINOKOSHI Y, ALQUIER T, FURUKAWA N, et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus[J]. Nature, 2004, 428(6982): 569-574. DOI:10.1038/nature02440
[66]KOLA B, HUBINA E, TUCCI S A, et al. Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase[J]. Journal of Biological Chemistry, 2005, 280(26): 25196-25201. DOI:10.1074/jbc.C500175200
[67]KOLA B, FARKAS I, CHRIST-CRAIN M, et al. The orexigenic effect of ghrelin is mediated through central activation of the endogenous cannabinoid system[J]. PLoS One, 2008, 3(3): e1797. DOI:10.1371/journal.pone.0001797
[68]APPUHAMY J, NAYANANJALIE W, ENGLAND E, et al. Effects of AMP-activated protein kinase (AMPK) signaling and essential amino acids on mammalian target of rapamycin (mTOR) signaling and protein synthesis rates in mammary cells[J]. Journal of Dairy Science, 2014, 97(1): 419-429. DOI:10.3168/jds.2013-7189
[69]LOCHER L, H?USSLER S, LAUBENTHAL L, et al. Effect of increasing body condition on key regulators of fat metabolism in subcutaneous adipose tissue depot and circulation of nonlactating dairy cows[J]. Journal of Dairy Science, 2015, 98(2): 1057-1068. DOI:10.3168/jds.2014-8710
[70]MCFADDEN J W, CORL B A. Activation of AMP-activated protein kinase (AMPK) inhibits fatty acid synthesis in bovine mammary epithelial cells[J]. Biochemical and Biophysical Research Communications, 2009, 390(3): 388-393. DOI:10.1016/j.bbrc.2009.09.017
[71]DENG Q H, LIU G W, LIU L, et al. BHBA influences bovine hepatic lipid metabolism via AMPK signaling pathway[J]. Journal of Cellular Biochemistry, 2015, 116(6): 1070-1079. DOI:10.1002/jcb.25062
相關(guān)知識
The Health Benefits of Dietary Fibre
哺乳期犢牛健康管理
左旋肉堿改善代謝綜合征的作用及機制研究進展
健康風險評估接口2
荷斯坦牛難產(chǎn)及子宮健康風險因素分析
Effects of water management on rice nitrogen utilization: a review
The influence of lifestyle and psychological factors on obesity in an occupational population
瘦型非酒精性脂肪性肝病的研究進展
代謝健康肥胖:從流行病學、機制到臨床意義
2018年我國15省(自治區(qū)/直轄市)18~35歲青年食物攝入特征
網(wǎng)址: Typical Metabolic Characteristics and Potential Technical Approaches of Nutritional Regulation in Transition Dairy Cows: A Review http://m.u1s5d6.cn/newsview510596.html
推薦資訊
- 1發(fā)朋友圈對老公徹底失望的心情 12775
- 2BMI體重指數(shù)計算公式是什么 11235
- 3補腎吃什么 補腎最佳食物推薦 11199
- 4性生活姿勢有哪些 盤點夫妻性 10425
- 5BMI正常值范圍一般是多少? 10137
- 6在線基礎(chǔ)代謝率(BMR)計算 9652
- 7一邊做飯一邊躁狂怎么辦 9138
- 8從出汗看健康 出汗透露你的健 9063
- 9早上怎么喝水最健康? 8613
- 10五大原因危害女性健康 如何保 7826