茶樹(shù)枝葉制備生物炭負(fù)載納米零價(jià)鐵凈化水中Cr(VI)
摘要:
茶樹(shù)廢棄物引起的環(huán)境破壞和病蟲(chóng)害爆發(fā)問(wèn)題日益突出,對(duì)其進(jìn)行無(wú)害化和資源化利用具有重要意義。該研究以修剪的茶樹(shù)枝葉提取液作為還原劑和封端劑,以提取后的殘?jiān)鳛樘吭?,成功制備了一種可高效去除水中六價(jià)鉻(Cr(VI))的生物炭負(fù)載納米零價(jià)鐵復(fù)合材料(nanoscale zero-valent iron embedded tea leaves,TLBC-nZVI)。分析了材料用量、溶液初始pH值和溫度等對(duì)Cr(VI)去除效果的影響;利用掃描電子顯微鏡結(jié)合能量色散X射線光譜儀(SEM-EDS)、傅立葉變換紅外光譜儀(FTIR)、X射線粉晶衍射儀(XRD)和X射線光電子能譜儀(XPS)等對(duì)材料進(jìn)行表征,結(jié)合吸附動(dòng)力學(xué)、吸附等溫線和吸附熱力試驗(yàn)探討了去除機(jī)制。結(jié)果表明酸性條件、高溫、增加材料用量有利于TLBC-nZVI對(duì)Cr(VI)的去除。TLBC-nZVI吸附過(guò)程符合準(zhǔn)二級(jí)動(dòng)力學(xué)模型、顆粒內(nèi)擴(kuò)散模型和Freundlich吸附等溫模型,該吸附是自發(fā)的化學(xué)吸熱過(guò)程。TLBC-nZVI與Cr(VI)的反應(yīng)機(jī)制為吸附在材料上的Cr(VI)被零價(jià)鐵(Fe0)和還原性官能團(tuán)還原為三價(jià)鉻(Cr(III)),隨后通過(guò)絡(luò)合、吸附和共沉淀等方式以Cr(OH)3、Cr2O3和FexCr1-x(OH)3的形式實(shí)現(xiàn)去除。研究結(jié)果可為茶園廢棄生物質(zhì)資源的無(wú)害化和資源化利用及其對(duì)水體環(huán)境中Cr(VI)污染的凈化提供一定理論依據(jù)。
關(guān)鍵詞: 復(fù)合材料 / 生物炭 / 資源化 / 茶樹(shù) / 零價(jià)鐵 / 六價(jià)鉻Abstract:
Water pollution has been one of the most serious environmental issues worldwide, due partly to the excess emissions of heavy metals. Among them, chromium (Cr) is one of the most important raw materials in a variety of industries, including metal mining, tanneries, electroplating, chrome plating, and dye manufacturing. The accumulation of Cr(VI) in the human body cannot be biodegraded, leading to various diseases, such as dermatitis, rhinitis, and even cancer. Thus, the World Health Organization (WHO) has recommended that the permissible limit of Cr for potable water of 0.05 mg/L. The trivalent (III) and hexavalent (VI) Cr forms can often be found in aqueous solutions. Cr(VI) has much higher toxicity, solubility, and mobility than Cr(III). Therefore, it is urgent to remove Cr(VI) from the water environment. Alternatively, the ZVI-embedded biochar can be expected to efficiently remove Cr(VI), due to the synergetic effect of adsorption and reduction. Generally, the ZVI-embedded biochar is produced to load Fe2+/Fe3+ onto precursor biochar, and then reduce the costly chemical reagents. However, the conventional processes of ZVI-embedded biochar can often be verbose, expensive, and/or release toxic byproducts. Therefore, it is a high demand for a cheap and convenient strategy to produce the ZVI/biochar. Meanwhile, more than one million tons of branches and leaves are pruned from tea trees each year in China, in order to improve branch growth and tea quality. Most residues are discarded or burned, leading to plant diseases and insect pests, or severe air contamination. Hence, it is imperative to develop new applications of pruned tea residues for environmental protection. Pruned tea residues with a rich number of cellulosic and polyphenolic components can be expected to serve as the biomass feedstocks and reducing agents, and then to synthesize the ZVI-embedded biochar. In this work, an inexpensive and convenient approach was developed for the synthesis of nanoscale zero-valent iron-embedded biochar (TLBC-nZVI) using pruned tea residues as biomass feedstocks and reducing agents. A series of batch experiments were carried out to explore the adsorption characteristics of TLBC-nZVI for Cr(VI). Scanning electron microscope with energy dispersive spectrometer (SEM-EDS), Fourier transform infrared spectrometer (FTIR), X-ray diffractometer (XRD), and X-ray photoelectron spectrometer (XPS) were applied to characterize the microscopic morphology and physicochemical properties of TLBC-nZVI before and after reaction with Cr(VI). The results showed that the nZVI was embedded successfully with the TLBC. Batch adsorption experiments demonstrated that the low pH value, high temperature, and a large amount of adsorbent were beneficial to the removal of Cr(VI). Batch adsorption experiments showed that the TLBC-nZVI shared excellent performance in the Cr(VI) removal (164.65 mg/g) from aqueous solutions. The kinetic studies showed that the Cr(VI) removal was also fit better with the pseudo-second-order model and intra-particle diffusion model. Therefore, the process of adsorption was mainly through chemical adsorption, such as surface complexation, electrostatic interactions, and ion exchange processes. The first region line cannot pass the origin in the intra-particle diffusion model, indicating the limited rate by the diffusion of the boundary layer. The second region fitting demonstrated that intraparticle diffusion was the limiting step. The Freundlich model was utilized to better simulate the isothermal adsorption behavior, indicating the adsorption under chemical action. The adsorption thermodynamics showed that the removal process was a chemical, spontaneous and endothermic reaction. The removal mechanisms were as follows: (1) the protonated TLBC-nZVI adsorbed anionic Cr(VI) by electrostatic interaction under acidic conditions; (2) Fe0, Fe(II), and some surface functional groups (such as -NH2 and -OH) reduced Cr(VI) to Cr(III); and (3) Cr(III) were removed through complexation, physical adsorption and coprecipitation. The finding can be served as a potential theoretical reference for the resource utilization of pruned tea wastes and the remediation of heavy metal pollution in water.
圖 1 TLBC-nZVI與Cr(VI)反應(yīng)前后材料表征
Figure 1. Characterization of TLBC-nZVI before and after reaction with Cr(VI)
圖 2 TLBC-nZVI用量和pH值對(duì)去除Cr(VI)的影響
Figure 2. Effect of TLBC-nZVI dosage and pH value on Cr(VI) removal
圖 3 TLBC-nZVI吸附Cr(VI)的動(dòng)力學(xué)模型
Figure 3. Adsorption kinetic models of Cr(VI) onto TLBC-nZVI
圖 4 TLBC-nZVI吸附Cr(VI)的等溫線模型
Figure 4. Adsorption isotherm models of Cr(VI) onto TLBC-nZVI
圖 5 XPS光譜圖
Figure 5. XPS spectra
圖 6 TLBC-nZVI去除Cr(VI)的主要機(jī)制
Figure 6. The main mechanism of Cr(VI) removal by TLBC-nZVI.
圖 7 TLBC-nZVI循環(huán)使用吸附量變化
Figure 7. Change in adsorption capacity after regeneration cycles
表 1 TLBC-nZVI吸附Cr(VI)的動(dòng)力學(xué)擬合參數(shù)
Table 1 Kinetic parameters of Cr(VI) onto TLBC-nZVI
Cr(VI)濃度Concentration of
Cr(VI)/(g·L?1)qeexp/
(mg·g?1)準(zhǔn)一級(jí)動(dòng)力學(xué)模型
Pseudo first-order準(zhǔn)二級(jí)動(dòng)力學(xué)模型
Pseudo second-order顆粒內(nèi)擴(kuò)散模型
Intraparticle diffusion modelqe/
(mg·g?1)k1/
(min?1)R2qe/
(mg·g?1)k2×10-3/
(g·(mg·min)?1)R2ki1/
(mg·(g·min0.5) ?1)ki2/
(mg·(g·min0.5) ?1)R12R22R32 0.199.8294.640.0460.907101.300.580.99711.122.250.9720.9930.9760.2136.67130.760.0370.911139.310.320.99315.935.030.9860.9800.9750.3161.36154.750.0370.893164.650.270.99621.067.580.1000.9950.972 注: qeexp:試驗(yàn)吸附量;qe :平衡吸附量;k1:準(zhǔn)一級(jí)動(dòng)力學(xué)吸附速率常數(shù);k2 :準(zhǔn)二級(jí)動(dòng)力學(xué)吸附速率常數(shù);ki1:邊界層擴(kuò)散速率常;ki2:顆粒內(nèi)擴(kuò)散速率常數(shù);R12,R22,R32:三個(gè)階段的相關(guān)系數(shù)。Note: qeexp: Experimental adsorption capacity;qe : Equilibrium absorption capacity;k1 : Pseudo-first order rate constant;k2 : Pseudo-second order rate constant;ki1: Boundary layer diffusion rate constant;ki2 : Intramaterial diffusion rate constant; R12, R22, R32: The correlation coefficents of the three stages.
表 2 不同改性生物炭材料對(duì)Cr(VI)吸附性能對(duì)比
Table 2 Comparison of adsorption capacities of various modified biochar materials for Cr(VI)
材料名稱Materials吸附量
Adsorbing capacity/(mg·g-1)文獻(xiàn)
Literature EBC-nZVI111. 27[12]MPHC-HDA142.86[20]TP–nZVI–OB95.50[21]nZVI/BC/CA86.40[22]5BC-Fe83.70[23]S-ZVI/PBC70066.02[24]nZVI@PEI-HBC40.16[25]nZVI-PBC39.50[26]TLBC-nZVI101.30本研究
表 3 TLBC-nZVI吸附Cr(VI)的等溫線和熱力學(xué)擬合參數(shù)
Table 3 Isotherm and thermodynamic parameters of Cr(VI) onto TLBC-nZVI
溫度Temperature/
℃Langmuir 方程
Langmuir equationFreundlich 方程
Freundlich equationΔG0/
(kJ·mol?1)ΔS0/
(J·(mol·K)?1)ΔH0/
(J·mol?1)qmax/
(mg·g?1)KL/
(L·mg?1)R2KF/
(L·mg?1)1/nR2 25107.140.38790.833455.19810.14810.9699?9.586287.6441.62635116.520.49980.778268.22060.12130.9703?13.81245127.010.61820.676582.02530.10040.9735?21.545 注:qmax:最大吸附量;KL:Langmuir常數(shù);KF:Freundlich常數(shù);n:吸附指數(shù);ΔG0:吉普斯自由能;ΔS0:熵變;ΔH0:焓變。Note: qmax: Maximal adsorption capacity; KL: Langmuir constant; KF: Freundlich constant; n: Adsorption index; ΔG0: Gibbs free energy change; ΔS0: Entropy change; ΔH0: Enthalpy change. [1] XIA S, SONG Z, JEYAKUMAR P, et al. Characteristics and applications of biochar for remediating Cr(VI)- contaminated soils and wastewater[J]. Environmental Geochemistry and Health, 2020, 42(6):1543-1567. doi: 10.1007/s10653-019-00445-w
XIA S, SONG Z, JEYAKUMAR P, et al. Characteristics and applications of biochar for remediating Cr(VI)- contaminated soils and wastewater[J]. Environmental Geochemistry and Health, 2020, 42(6): 1543-1567. doi: 10.1007/s10653-019-00445-w
[2] WISE J P J, YOUNG J L, CAI J, et al. Current understanding of hexavalent chromium Cr(VI) neurotoxicity and new perspectives[J]. Environment International, 2022, 158:106877. doi: 10.1016/j.envint.2021.106877WISE J P J, YOUNG J L, CAI J, et al. Current understanding of hexavalent chromium Cr(VI) neurotoxicity and new perspectives[J]. Environment International, 2022, 158: 106877. doi: 10.1016/j.envint.2021.106877
[3] 楊婷婷,黃艷艷,柳維揚(yáng),等. 三種改性小麥秸稈生物炭的表征分析及其對(duì)Cu2+的吸附性能特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(8):222-230. YANG Tingting, HUANG Yanyan, LIU Weiyang, et al. Characterization of three kinds of modified wheat straw derived biochars and their sorption capacity for Cu2+[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactionsof the CSAE), 2023, 39(8): 222-230. (in Chinese with English abstractYANG Tingting, HUANG Yanyan, LIU Weiyang, et al. Characterization of three kinds of modified wheat straw derived biochars and their sorption capacity for Cu2+[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactionsof the CSAE), 2023, 39(8): 222-230. (in Chinese with English abstract)
[4] AHMAD S, LIU L N, ZHANG S C, et al. Nitrogen-doped biochar (N-doped BC) and iron/nitrogen co-doped biochar (Fe/N co-doped BC) for removal of refractory organic pollutants[J]. Journal of Hazardous Materials, 2023, 446:130727. doi: 10.1016/j.jhazmat.2023.130727AHMAD S, LIU L N, ZHANG S C, et al. Nitrogen-doped biochar (N-doped BC) and iron/nitrogen co-doped biochar (Fe/N co-doped BC) for removal of refractory organic pollutants[J]. Journal of Hazardous Materials, 2023, 446: 130727. doi: 10.1016/j.jhazmat.2023.130727
[5] 邱凌,周勤勤,朱銘強(qiáng),等. 農(nóng)林生物質(zhì)制備鐵炭復(fù)合材料及其環(huán)境污染治理應(yīng)用的研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(22):172-182. QIU Ling, ZHOU Qinqin, ZHU Mingqiang, et al. Research progress on the preparation of iron-carbon composites from agricultural and forestry biomass and their application in improving environmental pollution[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(22): 172-182. (in Chinese with English abstract doi: 10.11975/j.issn.1002-6819.2022.22.019QIU Ling, ZHOU Qinqin, ZHU Mingqiang, et al. Research progress on the preparation of iron-carbon composites from agricultural and forestry biomass and their application in improving environmental pollution[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(22): 172-182. (in Chinese with English abstract). doi: 10.11975/j.issn.1002-6819.2022.22.019
[6] SUAZO-HERNáNDEZ J, SEPúLVEDA P, CáCERES-JENSEN L, et al. nZVI-based nanomaterials used for phosphate removal from aquatic systems[J], Nanomaterials, 2023, 13(3):399.SUAZO-HERNáNDEZ J, SEPúLVEDA P, CáCERES-JENSEN L, et al. nZVI-based nanomaterials used for phosphate removal from aquatic systems[J], Nanomaterials, 2023, 13 (3): 399.
[7] 中華人民共和國(guó)統(tǒng)計(jì)局. 中國(guó)統(tǒng)計(jì)年鑒-2021[M]. 北京: 中國(guó)統(tǒng)計(jì)出版社, 2021. [8] 林海裕. 棄采茶鮮葉和茶樹(shù)修剪枝青貯品質(zhì)與微生物多樣性研究[D]. 杭州: 浙江大學(xué), 2022.LIN Haiyu. Study on Silage Quality and Microbial Diversity of Abandoned Fresh Tea Leaves and Pruned Tea Branches[D]. Hangzhou: Zhejiang University, 2022. (in Chinese with English abstract)
[9] ZHANG L, LI M, LI X, et al. Summer pruning improves the branch growth and tea quality of tea trees (Camellia sinensis)[J]. Acta Physiologiae Plantarum, 2021, 43(4):65. doi: 10.1007/s11738-021-03226-0ZHANG L, LI M, LI X, et al. Summer pruning improves the branch growth and tea quality of tea trees (Camellia sinensis)[J]. Acta Physiologiae Plantarum, 2021, 43(4): 65. doi: 10.1007/s11738-021-03226-0
[10] ARAFAT Y, TAYYAB M, KHAN M U, et al. Long-term monoculture negatively regulates fungal community composition and abundance of tea orchards[J]. Agronomy, 2019, 9(8):466. doi: 10.3390/agronomy9080466ARAFAT Y, TAYYAB M, KHAN M U, et al. Long-term monoculture negatively regulates fungal community composition and abundance of tea orchards[J]. Agronomy, 2019, 9(8): 466. doi: 10.3390/agronomy9080466
[11] CHERDCHOO W, NITHETTHAM S, CHAROENPANICH J. Removal of Cr(VI) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea[J]. Chemosphere, 2019, 221:758-767. doi: 10.1016/j.chemosphere.2019.01.100CHERDCHOO W, NITHETTHAM S, CHAROENPANICH J. Removal of Cr(VI) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea[J]. Chemosphere, 2019, 221: 758-767. doi: 10.1016/j.chemosphere.2019.01.100
[12] 劉沁文,丁愛(ài)中,梁信,等. 桉樹(shù)生物炭負(fù)載綠色合成納米零價(jià)鐵去除水中Cr(Ⅵ)[J]. 環(huán)境科學(xué),2022,43(12):5657-5666. LIU Qinwen, DING Aizhong, LIANG Xin, et al. Removal of Cr(Ⅵ) from water using green synthesis nanoscale zero-valent iron supported on eucalyptus biochar[J]. Environmental Science, 2022, 43(12): 5657-5666. (in Chinese with English abstract doi: 10.13227/j.hjkx.202201252LIU Qinwen, DING Aizhong, LIANG Xin, et al. Removal of Cr(Ⅵ) from water using green synthesis nanoscale zero-valent iron supported on eucalyptus biochar[J]. 2022, 43(12): 5657-5666. (in Chinese with English abstract) doi: 10.13227/j.hjkx.202201252
[13] ZHU S, WANG S, YANG X, et al. Green sustainable and highly efficient hematite nanoparticles modified biochar- clay granular composite for Cr(VI) removal and related mechanism[J]. Journal of Cleaner Production, 2020, 276:123009.ZHU S, WANG S, YANG X, et al. Green sustainable and highly efficient hematite nanoparticles modified biochar- clay granular composite for Cr(VI) removal and related mechanism[J]. Journal of Cleaner Production, 2020, 276: 123009.
[14] 喬洪濤,李海龍,趙保衛(wèi),等. 磁流體改性制備磁性肉骨生物炭及其對(duì)Cd2+的吸附特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(12):199-206. QIAO Hongtao, LI Hailong, ZHAO Baowei, et al. Preparation of magnetic meat and bone meal biochar modified by magnetic fluid and its adsorption properties for Cd2+[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(12): 199-206. (in Chinese with English abstract doi: 10.11975/j.issn.1002-6819.2021.12.023QIAO Hongtao, LI Hailong, ZHAO Baowei, et al. Preparation of magnetic meat and bone meal biochar modified by magnetic fluid and its adsorption properties for Cd2+[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(12): 199-206. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2021.12.023
[15] ZHANG W, QIAN L, CHEN Y, et al. Nanoscale zero-valent iron supported by attapulgite produced at different acid modification:Synthesis mechanism and the role of silicon on Cr(VI) removal[J]. Chemosphere, 2021, 267:129183. doi: 10.1016/j.chemosphere.2020.129183ZHANG W, QIAN L, CHEN Y, et al. Nanoscale zero-valent iron supported by attapulgite produced at different acid modification: Synthesis mechanism and the role of silicon on Cr(VI) removal[J]. Chemosphere, 2021, 267: 129183. doi: 10.1016/j.chemosphere.2020.129183
[16] MON P P, CHO P P, CHANADANA L, et al. Bio-waste assisted phase transformation of Fe3O4/carbon to nZVI/graphene composites and its application in reductive elimination of Cr(VI)[J]. Separation and Purification Technology, 2023, 306:122632.MON P P, CHO P P, CHANADANA L, et al. Bio-waste assisted phase transformation of Fe3O4/carbon to nZVI/graphene composites and its application in reductive elimination of Cr(VI)[J]. Separation and Purification Technology, 2023, 306: 122632.
[17] ZHU S, WANG S, YANG X, et al. Green sustainable and highly efficient hematite nanoparticles modified biochar-clay granular composite for Cr(VI) removal and related mechanism[J]. Journal of Cleaner Production, 2020, 276:123009. doi: 10.1016/j.jclepro.2020.123009ZHU S, WANG S, YANG X, et al. Green sustainable and highly efficient hematite nanoparticles modified biochar-clay granular composite for Cr(VI) removal and related mechanism[J]. Journal of Cleaner Production, 2020, 276: 123009. doi: 10.1016/j.jclepro.2020.123009
[18] WANG H, CAI J, LIAO Z, et al. Black liquor as biomass feedstock to prepare zero-valent iron embedded biochar with red mud for Cr(VI) removal:mechanisms insights and engineering practicality[J]. Bioresource Technology, 2020, 311:123553. doi: 10.1016/j.biortech.2020.123553WANG H, CAI J, LIAO Z, et al. Black liquor as biomass feedstock to prepare zero-valent iron embedded biochar with red mud for Cr(VI) removal: mechanisms insights and engineering practicality[J]. Bioresource Technology, 2020, 311: 123553. doi: 10.1016/j.biortech.2020.123553
[19] 胡玉蓮,郭朝暉,徐智,等. 鎘污染水稻秸稈生物炭對(duì)土壤中鎘穩(wěn)定性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(5):204-211. HU Yulian, GUO Zhaohui, XU Zhi, et al. Effects of biochar from Cd-containing rice straw on stabilization of Cd in soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(5): 204-211. (in Chinese with English abstract doi: 10.11975/j.issn.1002-6819.2022.05.024HU Yulian, GUO Zhaohui, XU Zhi, et al. Effects of biochar from Cd-containing rice straw on stabilization of Cd in soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(5): 204-211. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2022.05.024
[20] Cai W, Wei J, Li Z, et al. Preparation of amino-functionalized magnetic biochar with excellent adsorption performance for Cr(VI) by a mild one-step hydrothermal method from peanut hull[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 563:102-111.Cai W, Wei J, Li Z, et al. Preparation of amino-functionalized magnetic biochar with excellent adsorption performance for Cr(VI) by a mild one-step hydrothermal method from peanut hull[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 563: 102-111.
[21] ZHANG, Y T, JIAO X Q, LIU N, et al. Enhanced removal of aqueous Cr(VI) by a green synthesized nanoscale zero-valent iron supported on oak wood biochar[J]. Chemosphere, 2020, 245:125542. doi: 10.1016/j.chemosphere.2019.125542ZHANG, Y T, JIAO X Q, LIU N, et al. Enhanced removal of aqueous Cr(VI) by a green synthesized nanoscale zero-valent iron supported on oak wood biochar[J]. Chemosphere, 2020, 245: 125542. doi: 10.1016/j.chemosphere.2019.125542
[22] ZHAO C H, LIU L, YANG X N, et al. Pyrolysis temperature and feedstock affected Cr(VI) removal capacity of sulfidated zerovalent iron:Importance of surface area and electrical conductivity[J]. Chemosphere, 2022, 296:133927. doi: 10.1016/j.chemosphere.2022.133927ZHAO C H, LIU L, YANG X N, et al. Pyrolysis temperature and feedstock affected Cr(VI) removal capacity of sulfidated zerovalent iron: Importance of surface area and electrical conductivity[J]. Chemosphere, 2022, 296: 133927. doi: 10.1016/j.chemosphere.2022.133927
[23] 薛嵩,錢(qián)林波,晏井春,等. 生物炭攜載納米零價(jià)鐵對(duì)溶液中Cr(Ⅵ)的去除[J]. 環(huán)境工程學(xué)報(bào),2016,10(6):2895-2901. XUE Song, QIAN Linbo, YAN Jingchun, et al. Removal of Cr(VI) from aqueous using biochar carried nanoscal zero-velent iron[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2895-2901. (in Chinese with English abstractXUE Song, QIAN Linbo, YAN Jingchun, et al. Removal of Cr(VI) from aqueous using biochar carried nanoscal zero-velent iron[J]. Chinese Journal of Environmental Engineering, 2016, 10(06): 2895-2901. (in Chinese with English abstract)
[24] QIU Y, ZHANG Q, GAO B, et al. Removal mechanisms of Cr(VI) and Cr(III) by biochar supported nanosized zero-valent iron:synergy of adsorption, reduction and transformation[J]. Environmental Pollution, 2020, 265:410-420.QIU Y, ZHANG Q, GAO B, et al. Removal mechanisms of Cr(VI) and Cr(III) by biochar supported nanosized zero-valent iron: synergy of adsorption, reduction and transformation[J]. Environmental Pollution, 2020, 265: 410-420.
[25] 侯素珍,田浩然,黃超,等. 氨基改性生物炭負(fù)載納米零價(jià)鐵去除水中Cr(Ⅵ)[J]. 環(huán)境科學(xué)學(xué)報(bào),2020,40(11):3931-3938. HOU Suzhen, TIAN Haoran, HUANG Chao, et al. Removal of Cr(VI) from aqueous solution by amino- modified biochar supported nano zero-valent iron[J]. Acta Scientiae Circumstantiae, 2020, 40(11): 3931-3938. (in Chinese with English abstractHOU Suzhen, TIAN Haoran, HUANG Chao, et al. Removal of Cr(VI) from aqueous solution by amino- modified biochar supported nano zero-valent iron[J]. Acta Scientiae Circumstantiae, 2020, 40(11): 3931-3938.
[26] MA L Y, DU Y G, CHEN S H, et al. Highly efficient removal of Cr(VI) from aqueous solution by pinecone biochar supported nanoscale zero-valent iron coupling with Shewanella oneidensis MR-1[J]. Chemosphere, 2022, 287:132184. doi: 10.1016/j.chemosphere.2021.132184MA L Y, DU Y G, CHEN S H, et al. Highly efficient removal of Cr(VI) from aqueous solution by pinecone biochar supported nanoscale zero-valent iron coupling with Shewanella oneidensis MR-1[J]. Chemosphere, 2022, 287: 132184. doi: 10.1016/j.chemosphere.2021.132184
[27] ZENG H, ZENG H, ZHANG H, et al. Efficient adsorption of Cr (VI) from aqueous environments by phosphoric acid activated eucalyptus biochar[J]. Journal of Cleaner Production, 2021, 286:124964. doi: 10.1016/j.jclepro.2020.124964ZENG H, ZENG H, ZHANG H, et al. Efficient adsorption of Cr (VI) from aqueous environments by phosphoric acid activated eucalyptus biochar[J]. Journal of Cleaner Production, 2021, 286: 124964. doi: 10.1016/j.jclepro.2020.124964
[28] DEHGHANI M H, SANAEI D, ALI I, et al. Removal of chromium(VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent:Kinetic modeling and isotherm studies[J]. Journal of Molecular Liquids, 2016, 215:671-679. doi: 10.1016/j.molliq.2015.12.057DEHGHANI M H, SANAEI D, ALI I, et al. Removal of chromium(VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: Kinetic modeling and isotherm studies[J]. Journal of Molecular Liquids, 2016, 215: 671-679. doi: 10.1016/j.molliq.2015.12.057
[29] LIU F L, LOU Y Y, XIA, F, et al. Immobilizing nZVI particles on MBenes to enhance the removal of U(VI) and Cr(VI) by adsorption-reduction synergistic effect[J] Chemical Engineering Journal. 2023, 454:140318.LIU F L, LOU Y Y, XIA, F, et al. Immobilizing nZVI particles on MBenes to enhance the removal of U(VI) and Cr(VI) by adsorption-reduction synergistic effect[J] Chemical Engineering Journal. 2023, 454: 140318.
[30] ZOU H, ZHAO J, HE F, et al. Ball milling biochar iron oxide composites for the removal of chromium (Cr (VI)) from water:Performance and mechanisms[J]. Journal of Hazardous Materials, 2021, 413:125252. doi: 10.1016/j.jhazmat.2021.125252ZOU H, ZHAO J, HE F, et al. Ball milling biochar iron oxide composites for the removal of chromium (Cr (VI)) from water: Performance and mechanisms[J]. Journal of Hazardous Materials, 2021, 413: 125252. doi: 10.1016/j.jhazmat.2021.125252
[31] PALANSOORIYA K N, KIM S, IGALAVITHANA A D, et al. Fe(III) loaded chitosan-biochar composite fibers for the removal of phosphate from water[J]. Journal of Hazardous Materials, 2021, 415:125464. doi: 10.1016/j.jhazmat.2021.125464PALANSOORIYA K N, KIM S, IGALAVITHANA A D, et al. Fe(III) loaded chitosan-biochar composite fibers for the removal of phosphate from water[J]. Journal of Hazardous Materials, 2021, 415: 125464. doi: 10.1016/j.jhazmat.2021.125464
[32] SOLIEMANZADEH A, FEKRI M. The application of green tea extract to prepare bentonite-supported nanoscale zero-valent iron and its performance on removal of Cr(VI):Effect of relative parameters and soil experiments[J]. Microporous and Mesoporous Materials, 2017, 239:60-69. doi: 10.1016/j.micromeso.2016.09.050SOLIEMANZADEH A, FEKRI M. The application of green tea extract to prepare bentonite-supported nanoscale zero-valent iron and its performance on removal of Cr(VI): Effect of relative parameters and soil experiments[J]. Microporous and Mesoporous Materials, 2017, 239: 60-69. doi: 10.1016/j.micromeso.2016.09.050
相關(guān)知識(shí)
釋放氧氣!最常見(jiàn)20種凈化空氣的室內(nèi)植物
喝鐵觀音茶能減肥嗎
空氣凈化器哪個(gè)牌子好!9款高性價(jià)比的空氣凈化器推薦!
9大類室內(nèi)空氣凈化材料
茶葉的保健作用
無(wú)公害茶葉栽培管理技術(shù)
桃枝泡水喝的功效
米家空氣凈化器Pro
中國(guó)茶文化與茶健康
質(zhì)量控制中的常見(jiàn)誤區(qū)(1): Cr=0
網(wǎng)址: 茶樹(shù)枝葉制備生物炭負(fù)載納米零價(jià)鐵凈化水中Cr(VI) http://m.u1s5d6.cn/newsview358294.html
推薦資訊
- 1發(fā)朋友圈對(duì)老公徹底失望的心情 12775
- 2BMI體重指數(shù)計(jì)算公式是什么 11235
- 3補(bǔ)腎吃什么 補(bǔ)腎最佳食物推薦 11199
- 4性生活姿勢(shì)有哪些 盤(pán)點(diǎn)夫妻性 10425
- 5BMI正常值范圍一般是多少? 10137
- 6在線基礎(chǔ)代謝率(BMR)計(jì)算 9652
- 7一邊做飯一邊躁狂怎么辦 9138
- 8從出汗看健康 出汗透露你的健 9063
- 9早上怎么喝水最健康? 8613
- 10五大原因危害女性健康 如何保 7826