首頁 資訊 健康老年人短期空氣污染暴露與體力活動對神經(jīng)損傷的影響

健康老年人短期空氣污染暴露與體力活動對神經(jīng)損傷的影響

來源:泰然健康網(wǎng) 時間:2024年12月07日 10:46

摘要:

[背景]越來越多的證據(jù)表明空氣污染對健康的損害以及體力活動對健康的益處,而空氣污染和體力活動對神經(jīng)系統(tǒng)的影響需要更多研究。

[目的]探究短期空氣污染暴露與體力活動對健康老年人神經(jīng)損傷生物標志的影響。

[方法]采用定組研究方法,在新鄉(xiāng)醫(yī)學院招募身心健康的退休職工,于2018年12月至2019年4月定期進行5次隨訪。使用問卷獲取人口學特征及體力活動信息,根據(jù)體力活動強度和時間計算每周的體力活動水平。檢測血清中神經(jīng)損傷生物標志包括腦源性神經(jīng)營養(yǎng)因子(BDNF)、神經(jīng)絲輕鏈(NF-L)、神經(jīng)元特異性烯醇化酶(NSE)、蛋白基因產(chǎn)物9.5(PGP9.5)和鈣結(jié)合蛋白S100B(S100B)的濃度。同時收集空氣污染數(shù)據(jù)(包括PM2.5、PM10、O3、SO2、CO、NO2)。采用廣義估計方程分析空氣污染物濃度、體力活動水平與神經(jīng)損傷生物標志濃度的關(guān)系。

[結(jié)果]研究共納入29名志愿者,年齡(63.5±5.89)歲;男性11人,占比37.93%;初中以上文化程度占半數(shù)以上(62.07%),體力活動水平為(80.23±54.51)MET-h·周?1。研究期間PM2.5、PM10、O3、SO2、CO、NO2的日均質(zhì)量濃度分別為(68.27±60.98)μg·m?3、(130.57±58.71)μg·m?3、(36.86±13.89)μg·m?3、(17.86±10.59)μg·m?3、(4.94±1.34)mg·m?3和(50.83±8.03)μg·m?3。血清BDNF、NF-L、NSE、PGP9.5和S100B的質(zhì)量濃度分別為(139.12±46.71)μg·L?1、(402.60±183.31)ng·L?1、(11.26±10.32)ng·L?1、(14.32±13.57)ng·L?1和(127.57±41.74)ng·L?1。廣義估計方程分析結(jié)果表明,較高濃度的PM2.5和O3與血清中NSE濃度增加有關(guān)(OR=1.359,95%CI:1.224~1.509,P<0.001;OR=1.286,95%CI:1.076~1.537,P=0.006),而較高濃度的NO2與NSE濃度降低有關(guān)(OR=0.692,95%CI:0.549~0.873,P=0.002);較高濃度的O3和SO2與血清中NF-L濃度降低有關(guān)(OR=0.855,95%CI:0.740~0.989,P=0.035;OR=0.813,95%CI:0.700~0.946,P=0.007);較高濃度的NO2與血清中PGP9.5濃度降低有關(guān)(OR=0.866,95%CI:0.777~0.965,P=0.009);較高體力活動水平與血清中S100B濃度增加有關(guān)(OR=1.038,95%CI:1.003~1.074,P=0.034);未發(fā)現(xiàn)體力活動、污染物與血清中BDNF的關(guān)系具有統(tǒng)計學意義(P>0.05)。

[結(jié)論]短期空氣污染暴露和高水平體力活動可能與老年人神經(jīng)損傷有關(guān)。顆粒污染物(PM2.5)與NSE增加有關(guān),氣態(tài)污染物(O3、NO2、SO2)與NF-L、PGP9.5降低有關(guān)。

Abstract:

[Background]Emerging evidence has shown the damage of air pollution and the benefits of physical activity to human health, and the effects of air pollution and physical activity on the nervous system need more research.

[Objective]To explore the effects of short-term air pollution exposure and physical activity on neural damage biomarkers in healthy elderly.

[Methods]Using a design of panel study, physically and mentally healthy retired employees were recruited from Xinxiang Medical University, and were followed up five times regularly from December 2018 to April 2019. The demographic characteristics and physical activity information were obtained by questionnaire, and the weekly physical activity level was calculated according to intensity and duration of physical activity. Biomarkers of neural damage in serum were measured, including brain-derived neurotrophic factor (BDNF), neurofilament light chain (NF-L), neuron specific enolase (NSE), protein gene product 9.5 (PGP9.5), and S100 calcium-binding protein B (S100B). Air pollution data (including PM2.5, PM10, O3, SO2, CO, and NO2) of the follow-up period were collected. Generalized estimation equation was used to analyze the association of air pollution concentration and physical activity level with the concentration of neural damage biomarkers.

[Results]A total of 29 volunteers were included in the study, with an average age of (63.5±5.9) years; there were 11 men accounting for 37.93%; more than half of them (62.07%) received above junior middle school education; the mean physical activity level was (80.23±54.51) MET-h·week?1. The daily average concentrations of PM2.5, PM10, O3, SO2, CO, and NO2 during the study period were (68.27±60.98) μg·m?3, (130.57±58.71) μg·m?3, (36.86±13.89) μg·m?3, (17.86±10.59) μg·m?3, (4.94±1.34) mg·m?3, and (50.83±8.03) μg·m?3, respectively. The average serum concentrations of BDNF, NF-L, NSE, PGP9.5, and S100B were (139.12±46.71) μg·L?1, (402.60±183.31) ng·L?1, (11.26±10.32) ng·L?1, (14.32±13.57) ng·L?1, and (127.57±41.74) ng·L?1, respectively. The results of generalized estimation equation showed that a higher concentration of PM2.5 or O3 was associated with increased serum NSE (OR=1.359, 95%CI: 1.224-1.509, P<0.001;OR=1.286, 95%CI: 1.076-1.537, P=0.006), while a higher concentration of NO2 was associated with decreased serum NSE (OR=0.692, 95%CI: 0.549-0.873, P=0.002); a higher concentration of O3 or SO2 was related to the reduction of serum NF-L concentration (OR=0.855, 95%CI: 0.740-0.989, P=0.035; OR=0.813, 95%CI: 0.700-0.946, P=0.007); a higher concentration of NO2 was associated with decreased PGP9.5 in serum (OR=0.866, 95%CI: 0.777-0.965, P=0.009); a higher level of physical activity was associated with increased serum S100B (OR=1.038, 95%CI: 1.003-1.074, P=0.034); and no significant association of physical activity level or air pollution with BDNF (P>0.05).

[Conclusion]Acute exposure to air pollution and high-level physical activity might affect the neural damage of elderly populations. Specifically, particulate matter (PM2.5) could increase NSE, while gaseous pollutants (O3, NO2, and SO2) could decrease NF-L and PGP9.5.

表  1  

研究期間空氣污染物濃度及老年志愿者神經(jīng)損傷生物標志濃度

Table  1  

The levels of air pollutants and neural damage biomarkers in elderly volunteers during study period

變量(Variable)$ bar x $$ s $最小值
MinP25P50P75最大值
Max顆粒物濃度
Particulate matter level PM2.5/(μg·m?3)68.2760.9826.1731.3345.8848.71189.29 PM10/(μg·m?3)130.5758.7178.2187.17117.42120.63246.08氣態(tài)污染物濃度
Gasous pollutant level O3/(μg·m?3)36.8613.8918.9628.7932.5042.9660.92 SO2/(μg·m?3)17.8610.5910.3316.4618.3320.0826.42 CO/(mg·m?3)4.941.342.384.665.175.966.36 NO2/(μg·m?3)50.838.0334.7149.4252.9256.8358.96神經(jīng)損傷生物標志濃度
Neural damage biomarker level BDNF/(μg·L?1)139.1246.71123.00175.00191.00203.00672.00 NF-L/(ng·L?1)402.60183.3187.84250.63391.08523.89866.52 NSE/(ng·L?1)11.2610.320.323.177.2817.1852.05 PGP9.5/(ng·L?1)14.3213.572.328.2512.0815.49125.52 S100B/(ng·L?1)127.5741.7494.40105.69113.09132.37341.43

表  2  

老年志愿者神經(jīng)損傷生物標志影響因素的GEE模型結(jié)果

Table  2  

Generalized estimation equation model results on influencing factors of neural damage biomarkers in elderly volunteers

參數(shù)(Variable)BDNFNF-LNSEPGP9.5S100 BbOR(95% CI)bOR(95% CI)bOR(95% CI)bOR(95% CI)bOR(95% CI)體力活動 (Physical activity)?0.0090.991(0.963~1.020)0.0051.005(0.882~1.146)0.1591.173(0.942~1.461)0.0161.106(0.887~1.164)0.0371.038(1.003~1.074)*PM2.5濃度(PM2.5 level)/(μg·m?3) >45.88 (vs. ≤45.88)?0.0190.981(0.962~1.002)0.0281.028(0.983~1.072)0.3071.359(1.224~1.509)*?0.0020.998(0.924~1.078)?0.0240.997(0.945~1.010)PM10濃度(PM10 level)/(μg·m?3) >117.42 (vs. ≤117.42)?0.0020.998(0.964~1.032)?0.1000.905(0.781~1.047)?0.1470.864(0.681~1.096)0.1351.144(0.986~1.328)?0.0190.981(0.981~1.080)O3濃度(O3 level)/(μg·m?3) >32.50 (vs. ≤32.50)0.0401.041(0.980~1.105)?0.1560.855(0.740~0.989)*0.2521.286(1.076~1.537)*0.0401.041(0.862~1.257)?0.0030.997(0.952~1.044)SO2濃度(SO2 level)/(μg·m?3) >18.33 (vs. ≤18.33)0.0051.005(0.942~1.073)?0.2070.813(0.700~0.946)*0.0451.046(0.853~1.283)0.0751.078(0.861~1.350)?0.0050.995(0.946~1.047)CO濃度(CO level)/(mg·m?3) >5.17 (≤5.17)?0.0130.987(0.939~1.037)0.0571.058(0.982~1.140)?0.0050.995(0.864~1.145)0.0131.013(0.900~1.141)0.0161.016(0.998~1.044)NO2濃度(NO2 level)/(μg·m?3) >52.92 (≤52.92)0.0351.036(0.982~1.094)?0.0450.956(0.831~1.099)?0.3680.692(0.549~0.873)*?0.1440.866(0.777~0.965)*0.0391.040(0.963~1.122)[注]*:P < 0.05。[Note] *: P < 0.05. [1]

中華人民共和國生態(tài)環(huán)境部. 2020中國生態(tài)環(huán)境狀況公報[R]. 北京: 中國生態(tài)環(huán)境部, 2021.

Ministry of Ecology and Environment of the People’s Republic of China. Bulletin on ecological and Environmental Conditions of China 2020[R]. Beijing: Ministry of Ecology and Environment of the People’s Republic of China, 2021.

[2]

XU D, ZHANG Y, ZHOU L, et al. Acute effects of PM2.5 on lung function parameters in schoolchildren in Nanjing, China: a panel study[J]. Environ Sci Pollut Res, 2018, 25(15): 14989-14995.

doi: 10.1007/s11356-018-1693-z [3]

SALIMI F, MORGAN G, ROLFE M, et al. Long-term exposure to low concentrations of air pollutants and hospitalisation for respiratory diseases: a prospective cohort study in Australia[J]. Environ Int, 2018, 121: 415-420.

doi: 10.1016/j.envint.2018.08.050 [4]

LIU C, CAI J, QIAO L, et al. The acute effects of fine particulate matter constituents on blood inflammation and coagulation[J]. Environ Sci Technol, 2017, 51(14): 8128-8137.

doi: 10.1021/acs.est.7b00312 [5]

LIU L, URCH B, SZYSZKOWICZ M, et al. Influence of exposure to coarse, fine and ultrafine urban particulate matter and their biological constituents on neural biomarkers in a randomized controlled crossover study[J]. Environ Int, 2017, 101: 89-95.

doi: 10.1016/j.envint.2017.01.010 [6]

CASPERSEN C J, POWELL K E, CHRISTENSON G M. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research[J]. Public Health Rep, 1985, 100(2): 126-131.

[7]

VERHOEVEN F, TORDI N, PRATI C, et al. Physical activity in patients with rheumatoid arthritis[J]. Joint Bone Spine, 2016, 83(3): 265-270.

doi: 10.1016/j.jbspin.2015.10.002 [8]

B?RJESSON M, ONERUP A, LUNDQVIST S, et al. Physical activity and exercise lower blood pressure in individuals with hypertension: narrative review of 27 RCTs[J]. Br J Sports Med, 2016, 50(6): 356-361.

doi: 10.1136/bjsports-2015-095786 [9]

SCHUCH F B, VANCAMPFORT D, FIRTH J, et al. Physical activity and incident depression: a meta-analysis of prospective cohort studies[J]. Am J Psychiatry, 2018, 175(7): 631-648.

doi: 10.1176/appi.ajp.2018.17111194 [10]

DISHMAN R K, MCDOWELL C P, HERRING M P. Customary physical activity and odds of depression: a systematic review and meta-analysis of 111 prospective cohort studies[J]. Br J Sports Med, 2021, 55(16): 926-934.

doi: 10.1136/bjsports-2020-103140 [11]

ORKABY A R, FORMAN D E. Physical activity and CVD in older adults: an expert's perspective[J]. Expert Rev Cardiovasc Ther, 2018, 16(1): 1-10.

doi: 10.1080/14779072.2018.1419062 [12]

TAINIO M, ANDERSEN Z J, NIEUWENHUIJSEN M J, et al. Air pollution, physical activity and health: a mapping review of the evidence[J]. Environ Int, 2021, 147: 105954.

doi: 10.1016/j.envint.2020.105954 [13]

LU B, NAGAPPAN G, LU Y. BDNF and synaptic plasticity, cognitive function, and dysfunction[J]. Handb Exp Pharmacol, 2014, 220: 223-250.

[14]

BRUREAU A, BLANCHARD-BREGEON V, PECH C, et al. NF-L in cerebrospinal fluid and serum is a biomarker of neuronal damage in an inducible mouse model of neurodegeneration[J]. Neurobiol Dis, 2017, 104: 73-84.

doi: 10.1016/j.nbd.2017.04.007 [15]

ISGRò M A, BOTTONI P, SCATENA R. Neuron-specific enolase as a biomarker: biochemical and clinical aspects[J]. Adv Exp Med Biol, 2015, 867: 125-143.

[16]

SATOH J I, KURODA Y. Ubiquitin C-terminal hydrolase-L1 (PGP9.5) expression in human neural cell lines following induction of neuronal differentiation and exposure to cytokines, neurotrophic factors or heat stress[J]. Neuropathol Appl Neurobiol, 2001, 27(2): 95-104.

doi: 10.1046/j.1365-2990.2001.00313.x [17]

STREITBüRGER D P, ARELIN K, KRATZSCH J, et al. Validating serum S100 B and neuron-specific enolase as biomarkers for the human brain-a combined serum, gene expression and MRI study[J]. PLoS One, 2012, 7(8): e43284.

doi: 10.1371/journal.pone.0043284 [18]

UHER T, MCCOMB M, GALKIN S, et al. Neurofilament levels are associated with blood-brain barrier integrity, lymphocyte extravasation, and risk factors following the first demyelinating event in multiple sclerosis[J]. Mult Scler J, 2021, 27(2): 220-231.

doi: 10.1177/1352458520912379 [19]

CHMIELEWSKA N, SZYNDLER J, MAKOWSKA K, et al. Looking for novel, brain-derived, peripheral biomarkers of neurological disorders[J]. Neurol Neurochir Pol, 2018, 52(3): 318-325.

doi: 10.1016/j.pjnns.2018.02.002 [20]

AINSWORTH B E, HASKELL W L, WHITT M C, et al. Compendium of physical activities: an update of activity codes and MET intensities[J]. Med Sci Sports Exerc, 2000, 32(9 Suppl): S498-S504.

[21]

CALDERóN-GARCIDUE?AS L, AZZARELLI B, ACUNA H, et al. Air pollution and brain damage[J]. Toxicol Pathol, 2002, 30(3): 373-389.

doi: 10.1080/01926230252929954 [22]

OUDIN A, FORSBERG B, ADOLFSSON A N, et al. Traffic-related air pollution and dementia incidence in northern sweden: a longitudinal study[J]. Environ Health Perspect, 2016, 124(3): 306-312.

doi: 10.1289/ehp.1408322 [23]

REITMAYER C M, RYALLS J M W, FARTHING E, et al. Acute exposure to diesel exhaust induces central nervous system stress and altered learning and memory in honey bees[J]. Sci Rep, 2019, 9(1): 5793.

doi: 10.1038/s41598-019-41876-w [24]

CALDERóN-GARCIDUE?AS L, AVILA-RAMIREZ J, CALDERóN-GARCIDUE?AS A, et al. Cerebrospinal fluid biomarkers in highly exposed PM2.5 urbanites: the risk of Alzheimer's and Parkinson's diseases in young Mexico city residents[J]. J Alzheimers Dis, 2016, 54(2): 597-613.

doi: 10.3233/JAD-160472 [25]

BOS I, DE BOEVER P, VANPARIJS J, et al. Subclinical effects of aerobic training in urban environment[J]. Med Sci Sports Exerc, 2013, 45(3): 439-447.

doi: 10.1249/MSS.0b013e31827767fc [26]

CLIFF R, CURRAN J, HIROTA J A, et al. Effect of diesel exhaust inhalation on blood markers of inflammation and neurotoxicity: a controlled, blinded crossover study[J]. Inhal Toxicol, 2016, 28(3): 145-153.

doi: 10.3109/08958378.2016.1145770 [27]

MOKOENA M L, HARVEY B H, VILJOEN F, et al. Ozone exposure of Flinders Sensitive Line rats is a rodent translational model of neurobiological oxidative stress with relevance for depression and antidepressant response[J]. Psychopharmacology (Berl), 2015, 232(16): 2921-2938.

doi: 10.1007/s00213-015-3928-8 [28]

KOCHI C, SALVI A, ATROOZ F, et al. Simulated vehicle exhaust exposure induces sex-dependent behavioral deficits in rats[J]. Environ Toxicol Pharmacol, 2021, 86: 103660.

doi: 10.1016/j.etap.2021.103660 [29]

BOS I, DE BOEVER P, PANIS L I, et al. Negative effects of ultrafine particle exposure during forced exercise on the expression of Brain-Derived Neurotrophic Factor in the hippocampus of rats[J]. Neuroscience, 2012, 223: 131-139.

doi: 10.1016/j.neuroscience.2012.07.057 [30]

BOS I, DE BOEVER P, PANIS L I, et al. Physical activity, air pollution and the brain[J]. Sports Med, 2014, 44(11): 1505-1518.

doi: 10.1007/s40279-014-0222-6 [31]

GILES L V, KOEHLE M S. The health effects of exercising in air pollution[J]. Sports Med, 2014, 44(2): 223-249.

doi: 10.1007/s40279-013-0108-z [32]

LAUTENSCHLAGER N T, COX K L, FLICKER L, et al. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial[J]. JAMA, 2008, 300(9): 1027-1037.

doi: 10.1001/jama.300.9.1027 [33]

CHENG S T, CHOW P K, SONG Y Q, et al. Mental and physical activities delay cognitive decline in older persons with dementia[J]. Am J Geriatr Psychiatry, 2014, 22(1): 63-74.

doi: 10.1016/j.jagp.2013.01.060 [34]

RAFFIN J, ROLLAND Y, AGGARWAL G, et al. Associations between physical activity, blood-based biomarkers of neurodegeneration, and cognition in healthy older adults: the MAPT study[J]. J Gerontol A Biol Sci Med Sci, 2021, 76(8): 1382-1390.

doi: 10.1093/gerona/glab094 [35]

GALLAWAY P J, MIYAKE H, BUCHOWSKI M S, et al. Physical activity: a viable way to reduce the risks of mild cognitive impairment, Alzheimer's disease, and vascular dementia in older adults[J]. Brain Sci, 2017, 7(2): 22.

[36]

SARNAT S E, CHANG H H, WEBER R J. Ambient PM2.5 and health: does PM2.5 oxidative potential play a role?[J]. Am J Respir Crit Care Med, 2016, 194(5): 530-531.

doi: 10.1164/rccm.201603-0589ED [37]

KIM S R, CHOI S, KIM K, et al. Association of the combined effects of air pollution and changes in physical activity with cardiovascular disease in young adults[J]. Eur Heart J, 2021, 42(25): 2487-2497.

doi: 10.1093/eurheartj/ehab139 [38]

TU R, HOU J, LIU X, et al. Physical activity attenuated association of air pollution with estimated 10-year atherosclerotic cardiovascular disease risk in a large rural Chinese adult population: a cross-sectional study[J]. Environ Int, 2020, 140: 105819.

doi: 10.1016/j.envint.2020.105819

相關(guān)知識

空氣污染對人體健康影響有多大
空氣污染治理與健康影響研究
太原市孕期空氣污染暴露對早產(chǎn)的影響
大氣污染對人體健康的影響深遠
孕期空氣污染對孩子健康的影響
空氣污染與健康關(guān)系.pptx
居民時空行為與環(huán)境污染暴露對健康影響的研究進展
空氣污染對身體健康的影響有哪些
環(huán)境污染對人類健康的綜合影響.docx
空氣污染對健康的影響

網(wǎng)址: 健康老年人短期空氣污染暴露與體力活動對神經(jīng)損傷的影響 http://m.u1s5d6.cn/newsview335669.html

推薦資訊