中國人限制性飲食和食物渴求的認知神經(jīng)機制
·主編特邀(Editor-In-Chief Invited)·
編者按: 在美味食物豐富的當今社會, 限制性飲食(即, 節(jié)食)和食物渴求現(xiàn)象十分普遍, 且與人們的身心健康密切相關, 例如可能引發(fā)飲食失調(diào)、肥胖等健康問題, 引起國內(nèi)外心理學界的廣泛關注。因此, 本期主編特邀西南大學心理學部陳紅教授撰寫《中國人限制性飲食和食物渴求的認知神經(jīng)機制》一文, 歸納中國文化背景下的限制性飲食和食物渴求認知神經(jīng)表現(xiàn)的研究, 對這些結果的研究對象、方法、創(chuàng)新和進展等方面進行有意義的論述, 并在此基礎上對該領域未來研究和應用提出展望。作者陳紅教授及其團隊自2000年起一直從事身體自我和飲食行為研究, 在對中國人限制性飲食和食物渴求的探索上取得了原創(chuàng)性的研究成果, 并推進該領域在國際上的進展。
1 引言
中國的飲食文化源遠流長, 俗語“民以食為天”反映出中國人對于飲食的重視。飲食行為與每一個人的生活息息相關, 科學飲食對人們的身心健康有著至關重要的作用。隨著社會的進步和發(fā)展, 美味食物隨處可見, 同時人們對自身形象和健康的要求不斷提高。一方面, 現(xiàn)代富足社會中, 食物既美味可口又方便獲得, 因此人們往往容易被美味食物吸引而產(chǎn)生食物渴求; 另一方面, 為了健康管理, 以及塑造和維持苗條的身材, 大量以年輕女性為主的群體采用限制性飲食(即, 節(jié)食)的方式來減少進食。在當前中國社會中, 食物渴求和限制性飲食現(xiàn)象十分普遍, 且與人們的健康密切相關。例如, 食物渴求可能導致暴食和肥胖(Zhou et al., 2019), 限制性飲食可能誘發(fā)厭食癥, 或反向發(fā)展為“去抑制進食”, 即反而吃更多(王劭睿, 陳紅,2019; Schaumberg et al., 2016)。因此, 關注中國人食物渴求和限制性飲食的認知神經(jīng)機制具有十分重要的理論價值和現(xiàn)實意義。食物渴求和限制性飲食的研究最早在西方興起, 但是由于飲食受地域和文化影響較大, 西方研究結論以及采用的食物材料未必適合中國人。中國食物圖片庫的建立為開展中國飲食行為研究提供了方法上的支持和依據(jù)(Kong et al., 2015)。近幾年, 國內(nèi)學者進行一系列研究考察了中國人限制性飲食的認知特征和神經(jīng)機制, 探索一般食物渴求腦機制的同時, 開展有中國區(qū)域特色的辣食渴求研究。這些成果不僅在中國文化背景下系統(tǒng)探討了中國人飲食行為的認知神經(jīng)機制, 同時進一步推進該研究領域在國際上的發(fā)展。
2 限制性飲食
限制性飲食(restrained eating, RE)是指為了減肥或保持體重而節(jié)食的傾向, 通常表現(xiàn)為攝入低卡路里食物、流食, 以及間歇性禁食/斷食等(Polivy et al., 2020)。一些研究認為限制性飲食可以實現(xiàn)減少食物攝入、減輕體重的目的; 相反, 大量研究發(fā)現(xiàn)限制性飲食者(restraint eaters, REs)無法長期控制飲食, 甚至比非限制性飲食者(non-restraint eaters, NREs)表現(xiàn)出更多的(高熱量)食物攝入, 即去抑制進食。研究者們將后者現(xiàn)象稱為限制性飲食的反調(diào)節(jié)作用(Zhang et al., 2019)。限制性飲食對食物攝入的影響是正向還是反向的, 研究者們?nèi)匀淮嬖跔幾h。目前, 大多數(shù)認知神經(jīng)證據(jù)支持反向調(diào)節(jié)的觀點。此外, 限制性飲食者可以區(qū)分為成功和失敗兩類, 成功的限制性飲食者對應著飲食控制行為, 而失敗的限制性飲食者則對應著去抑制進食。
2.1 限制性飲食者的反向調(diào)節(jié)
限制性飲食者(REs)通常面臨著享受美食和控制體重兩種目標的沖突, 且往往美食當前時, 會忽略節(jié)食或變瘦的目標。神經(jīng)成像研究也發(fā)現(xiàn), REs抑制控制腦區(qū)激活較弱, 而獎賞腦區(qū)激活程度更強。這些結果從認知神經(jīng)機制的角度解釋了限制性飲食的反調(diào)節(jié)作用, 即為什么大多數(shù)節(jié)食者更容易表現(xiàn)出“反而吃更多”的去抑制進食行為。
飲食的目標沖突模型認為, 節(jié)食者通常面臨兩個相互矛盾的目標:享受美食與控制體重(Stroebe et al., 2013)。由于現(xiàn)在社會中接觸大量美食信息, REs更容易激活享受美食目標、抑制控制體重目標, 從而導致去抑制進食和不健康飲食行為。即面臨兩種目標沖突時, REs對享受美食目標表現(xiàn)出更多注意偏好和較弱的抑制控制能力。目標沖突模型在行為和神經(jīng)表現(xiàn)上都得到了證據(jù)支持。首先, 在行為上, 為了直接考察REs在享受美食和控制體重兩種目標沖突下的抑制控制, 我們的研究采用創(chuàng)新的圖片-詞語干擾范式, 將食物信息和身材信息同時呈現(xiàn), 形成直觀的目標沖突。結果發(fā)現(xiàn)食物信息沖突條件下, 年輕女性REs比身材信息沖突條件下反應時更長、錯誤率更高。即相比于身材信息, 限制性飲食的女性更偏好食物信息, 可以理解為對美食信息加工自動化, 且抑制控制過程參與度較低(Chen et al., 2019)。其次, 在神經(jīng)表現(xiàn)上, 事件相關電位(ERP)的研究也發(fā)現(xiàn)了REs的抑制控制和飲食行為之間存在直接關聯(lián)。例如, 在食物go/no-go任務中, 發(fā)現(xiàn)食物暴露條件下REs抑制控制能力減弱。即與非限制性飲食者相比, REs的額葉和額葉中央?yún)^(qū)與食物相關的no-go N2a波幅較小。此外, 與基線相比, 食物暴露后REs的no-go P3波幅顯著增加, 而UREs沒有表現(xiàn)出差異(Zhou et al., 2018)。N2和P3是抑制控制研究的常用指標。其中, N2a與抑制控制控制有關(Pires et al., 2014), 表明REs對食物信息的抑制控制能力降低; 而P3與加工強度有關(Chen et al., 2018), 食物暴露后P3波幅增加, 表明REs需要分配更多注意資源到對食物信息的抑制控制中。
以上研究從行為和生理層面支持了中國人限制性飲食群體也符合西方背景下的飲食目標沖突模型, 同時進一步推動了REs抑制控制的研究進展。例如, 通過實驗范式的方法創(chuàng)新直接比較REs在享受美食和控制體重兩種目標沖突條件下的認知控制表現(xiàn)(Chen et al., 2019); 采用ERP技術識別REs抑制性控制降低的可能神經(jīng)標志物(Zhou et al., 2018)。為理解為什么許多限制性飲食者表現(xiàn)出去抑制進食行為提供了證據(jù)。
在檢驗享受美食-控制體重沖突的行為和ERP研究中, 主要從抑制控制的角度支持目標沖突模型。但是, 由于實驗范式和測量指標的限制, 導致無法直接考察食物信息是否以及如何誘發(fā)REs享樂目標。因此, 神經(jīng)影像學研究通過考察大腦區(qū)域激活, 不僅進一步支持了REs抑制控制能力降低, 同時也發(fā)現(xiàn)了食物獎賞性提高和獎賞腦區(qū)改變的相關證據(jù), 為限制性飲食的反調(diào)節(jié)作用提供了一個新的解釋視角。
限制性飲食的神經(jīng)成像研究大多采用功能磁共振成像(fMRI), 在任務態(tài)中考察REs的大腦活動。總體而言, 與非限制性飲食者(NREs)相比, REs在獎賞相關腦區(qū)(如, 腦島和眶額皮層[OFC])有更強的神經(jīng)激活, 與抑制控制相關的腦區(qū)(如, 背外側前額葉[dlPFC]和前扣帶回[ACC])激活減少(Wanget al., 2016)。例如, 在食物信息和中性信息的oddball任務中, 當對高熱量食物圖片進行反應時, REs比NREs反應更快, 在獎賞(腦島, OFC)、注意(額上回)和視覺加工(顳上回)相關腦區(qū)的激活增強, 但是抑制控制腦區(qū)(ACC)激活下降。REs對低熱量食物的反應時最長, 在低熱量食物-中性圖片對比條件下, 注意和視覺加工相關腦區(qū)的激活明顯強于NREs (Wang et al., 2016)。表明雖然REs對食物信息都具備較高的敏感性, 但是他們對高熱量食物具有注意偏向, 而對低熱量食物則表現(xiàn)為更多的注意資源分配。此外, 由于沖動控制需要認知資源, 并且是體重控制和體重波動的重要行為關聯(lián)(Weygandt et al., 2015), 因此不應忽視與沖動控制有關腦區(qū)對REs飲食行為的影響。我們采用巧克力延遲折扣任務考察女性REs沖動行為的神經(jīng)關聯(lián), 發(fā)現(xiàn)REs在紋狀體和dlPFC激活增強。同時, 右側紋狀體激活與獎賞系統(tǒng)呈正相關, 左側dlPFC與紋狀體激活正相關, 表明REs沖動腦區(qū)(紋狀體)是對食物獎賞腦區(qū)的補充(Dong et al., 2015)。因此, 在食物相關任務中, REs大腦激活模式主要表現(xiàn)為獎賞腦區(qū)激活增強, 而抑制控制腦區(qū)激活降低。此外, 注意、視覺和沖動相關腦區(qū)的激活也表明了食物信息對REs具有更強烈和難以抑制的吸引力。
靜息態(tài)功能磁共振成像(rs-fMRI)是測量沒有執(zhí)行明確任務時, 人們大腦BOLD信號的自發(fā)活動(Stopyra et al., 2019)。我們的系列研究發(fā)現(xiàn), 當缺乏食物線索時, REs在獎賞和注意腦區(qū)也表現(xiàn)出更強的激活, 而抑制控制腦區(qū)則表現(xiàn)出自發(fā)活動減少。首先, 研究者(Dong et al., 2014)使用區(qū)域同質性(ReHo)發(fā)現(xiàn)REs在與獎賞(OFC)、注意(舌回、楔狀體、頂下小葉)和身體感知功能(即中央旁小葉、前島葉)相關的腦區(qū)中顯示出較多ReHo激活。第二, 研究者(Dong et al., 2015)采用ReHo分析方法, 發(fā)現(xiàn)年輕女性REs在食物獎賞腦區(qū)(OFC/腹內(nèi)側前額葉[vmPFC])表現(xiàn)出更多激活, 抑制控制腦區(qū)(dlPFC)自發(fā)活動減少。第三, 研究者(Chen et al., 2016)通過體素鏡像同位體連通性(VMHC)考察大腦半球之間的相互作用, 評估了REs的抑制控制和獎賞系統(tǒng)之間的功能協(xié)調(diào)。發(fā)現(xiàn)與UREs相比, 女性REs表現(xiàn)出dlPFC的VMHC降低, 右側前額葉和ACC功能連接改變。這種抑制控制區(qū)域大腦半球間功能連接降低和獎賞相關區(qū)域功能連接改變有助于解釋REs無法控制享樂目標而采取進食行為, 并表現(xiàn)出更高水平的暴食癥狀。以上靜息態(tài)fMRI結果表明, 限制性飲食者在獎賞-抑制腦區(qū)的自發(fā)神經(jīng)活動也發(fā)生了改變, 即在食物相關任務fMRI研究中觀察到的大腦激活模式在無食物信息刺激的條件下仍然存在。
此外, 大腦結構的改變也是解釋限制性飲食及其反調(diào)節(jié)作用的一個重要的潛在神經(jīng)機制。一些研究考察了飲食行為與大腦結構變化之間的關系, 主要表現(xiàn)在獎勵腦區(qū)的灰質體積(GMV)較高, 而涉及抑制控制的腦區(qū)GMV較低。例如, 采用三因素飲食量表發(fā)現(xiàn), 去抑制進食與左側額中回GMV負相關, 限制性飲食與殼核GMV呈負相關、與dlPFC (Yao et al., 2016)和右側楔前葉GMV正相關(Song et al., 2019)。此外, 采用限制性飲食量表發(fā)現(xiàn), 較高RE水平與OFC和左側島葉GMV正相關、與雙側后扣帶回GMV負相關(Su et al., 2017)。這些結果表明, 限制性飲食和去抑制進食相關的大腦結構變化可能導致抑制控制功能降低和食物敏感性的增加。
綜上所述, 任務態(tài)、靜息態(tài)和結構態(tài)fMRI結果揭示了中國人REs認知神經(jīng)機制, 同時這些多模態(tài)結果進一步推進了國際限制性飲食的研究進展。與行為和ERP結果一致, fMRI研究中也發(fā)現(xiàn)了REs與抑制控制腦區(qū)激活降低、灰質體積減少相關。此外, 腦成像結果還發(fā)現(xiàn)了REs在獎賞腦區(qū)激活增強、灰質體積增加。總的來說, 這些神經(jīng)成像研究強調(diào)了REs如何增強食物線索的獎賞價值、降低抑制控制能力, 從而增加REs在食物豐富環(huán)境中忽略體重控制目標、采取去抑制進食的風險。
2.2 成功和失敗限制性飲食者的認知神經(jīng)表現(xiàn)差異
雖然大多數(shù)REs通常無法長期保持節(jié)食, 甚至表現(xiàn)出去抑制進食, 但是也存在一些REs可以比較穩(wěn)定地維持減少熱量攝入的目標, 因此研究者們根據(jù)REs的行為表現(xiàn)將其分為亞型——成功的限制飲食者(SREs)和失敗的限制飲食者(UREs) (Polivyet al., 2020)。根據(jù)目標沖突模型, UREs通常為了滿足享受美食目標去破壞控制體重目標, 表現(xiàn)出去抑制進食行為; SREs則優(yōu)先考慮控制體重目標, 從而即使在食物豐富的環(huán)境中也能減少熱量攝入、保持體重(Keller & Siegrist, 2014)。
成功和失敗的限制性飲食者的認知神經(jīng)差異主要表現(xiàn)在注意偏向和沖突控制, 研究者從行為、眼動、腦電和神經(jīng)成像等方面進行考察。首先, 在注意偏向方面, 成功和失敗的限制性飲食者之間存在差異, 并表現(xiàn)出顯著的食物信息加工的能量效應, 即UREs比SREs對高熱量食物表現(xiàn)出更多注意偏好。例如, 對食物信息注意偏向的眼動追蹤研究發(fā)現(xiàn), SREs對高熱量食物表現(xiàn)出早期的注意警覺和總體的注意回避; 而UREs對高熱量食物表現(xiàn)出早期的注意警覺、回避和總體的注意維持, 即UREs對高熱量食物信息注意更多(張雪萌 等, 2016)。
其次, 在沖突抑制方面, 由于大量注意資源投入到美味食物信息, 研究者們認為UREs比SREs在食物選擇任務中經(jīng)歷的享受美食-控制體重兩種目標之間的沖突更少。已有一些眼動、ERP和神經(jīng)成像研究考察UREs和SREs的沖突控制差異。例如, 在眼動研究中, 通過比較選擇食物時的反應時和目光轉換指標, 發(fā)現(xiàn)UREs比SREs反應更快、目光轉換更少, 即經(jīng)歷更少沖突(Zhang et al., 2019)。這種認知沖突差異的神經(jīng)基礎已經(jīng)得到了來自rs-fMRI和ERP的證據(jù)支持。例如, UREs比SREs在抑制控制腦區(qū)(頂下葉)ReHo降低; 沖突監(jiān)控腦區(qū)(前扣帶皮層)激活降低; 沖突監(jiān)測和抑制控制腦區(qū)(尤其額頂葉網(wǎng)絡)的關聯(lián)性較弱(Zhang et al., 2020)。ERP研究也支持了成功和失敗REs在沖突監(jiān)控和抑制控制上的差異, 即在食物go/no-go任務中, SREs的no-go N2a波幅大于UREs (Liu et al., 2020)。
此外, 我們進一步探討了消極情緒對UREs和SREs沖突控制的影響。例如, 在食物go/no-go任務中, 與中性情緒狀態(tài)相比, SREs和UREs在消極情緒狀態(tài)下都誘發(fā)更大的N2a波幅, 表明消極情緒狀態(tài)可能干擾人們的沖突監(jiān)測和抑制控制能力。此外, 在消極情緒狀態(tài)下, 只有SREs的no-go P3波幅顯著降低, 表明SREs對食物的抑制控制能力可能增強, 因此SREs即使在消極情緒狀態(tài)下也可能抑制外界食物線索帶來的進食欲望, 而URE則無法抑制食欲(Liu et al., 2020)??梢? 消極情緒影響了成功和失敗限制性飲食者的沖突控制, 并表現(xiàn)出不同的抑制控制能力。
因此, 成功和失敗的限制性飲食者的認知神經(jīng)表現(xiàn)差異或許可以解釋他們的節(jié)食行為是否成功, 具體表現(xiàn)為在行為和神經(jīng)指標上, 即UREs比SREs對高熱量食物有更多注意偏好, 且沖突監(jiān)測和抑制控制能力較弱。同時, 消極情緒也是干擾節(jié)食成功的關鍵因素之一。
3 食物渴求
食物渴求(food craving)是一種想要攝入特定食物(或食物類型)的強烈欲望, 幾乎每個人都曾體驗到一種或者多種的食物渴求(Kober & Mell, 2015)。雖然與酒精等具有危害后果的物質渴求相比較, 食物渴求屬于相對良性的現(xiàn)象, 但也會在一定程度上影響健康, 例如預測暴食行為和體重變化(Kober & Boswell, 2018)。除了一般食物渴求, 國際上研究者開始探討某些特定食物渴求, 主要集中在甜食渴求(Meule & Hormes, 2015)、碳水化合物渴求(Ma et al., 2017)等。中國飲食文化中辛辣食物是一種主要的食物類型, “嗜辣”也是一種區(qū)域性普遍現(xiàn)象, 國內(nèi)研究者開始探討辣食渴求的行為表現(xiàn)和認知神經(jīng)機制。
3.1 食物渴求的認知神經(jīng)研究
根據(jù)是否與暫時生理需求(如, 饑餓)有關, 食物渴求可以區(qū)分為狀態(tài)和特質, 心理學研究中通??疾焯刭|食物渴求的認知表現(xiàn)。特質食物渴求問卷(FCQ-t; 如“我感覺我腦子里時時刻刻都想著食物”, “有時, 吃東西讓一切顯得完美”等)可以測量人們在行為、認知和生理方面對一般食物渴求的特質反映(Hormes & Meule,2016)。
在認知表現(xiàn)上, 高食物渴求者比低渴求者對食物有更強的自動接近傾向(Brockmeyer et al., 2015); 食物渴求和特質沖動共同影響人們對食物信息的抑制控制能力(Meule & Kubler, 2014); 接觸到食物線索會導致食物渴求者抑制控制能力減弱(Jones et al., 2018)。
然而, 我們對食物渴求的神經(jīng)機制仍然知之甚少。許多證據(jù)表明, 食物和藥物獎勵有相似的神經(jīng)基礎(Noori et al., 2016), 一般物質渴求相關的fMRI研究發(fā)現(xiàn), 海馬、腦島和尾狀核的特異性激活與強烈渴求有關。在此基礎上, 近期一項靜息態(tài)fMRI研究考察與食物渴求相關腦區(qū)的自發(fā)神經(jīng)活動。在年輕健康女性中, 采用ReHo分析評估大腦自發(fā)活動的時間同步性, 發(fā)現(xiàn)食物渴求與情緒記憶(海馬旁回)和視覺注意處理(梭狀回)ReHo激活正相關(Chen et al., 2017)。其中, 梭狀回與食物視覺屬性加工有關, 其激活增加符合視覺食物線索在日常食物渴求中的中心作用。此外, 海馬旁回參與享樂學習和激勵記憶編碼, 其激活增加表明, 高特質渴求個體可能表現(xiàn)出更高的進食享受、對美食線索的自動反應, 以及對可口食物的更頻繁的回憶; 而更頻繁地回憶曾經(jīng)品嘗過的食物可能會加強情緒記憶, 并促進對美味食物的記憶編碼。
因此, 特質食物渴求可能是由海馬旁回自發(fā)活動增強的記憶回路編碼的, 即強化的享樂記憶可能會使對美食的強烈渴望凌駕于體重控制目標之上。該結果與以往物質渴求研究結果一致, 表明物質渴求亞型之間具有一定的相似性。
3.2 辣食渴求的認知神經(jīng)研究
以往對特定食物渴求的腦成像研究相對集中在甜食渴求等, 例如巧克力渴求者和非渴求者在OFC、ACC和腹側紋狀體對甜食的反應存在差異(Rolls & McCabe, 2007)。不同于對其他美味食物(如, 甜食)的普遍喜愛, 人們對辣食的態(tài)度跨度較大——從渴求到厭惡(Tepperet al., 2004), 因此辣食渴求者的認知神經(jīng)表現(xiàn)應不同于其他特定食物渴求者。此外, 其他食物渴求大多危害身體健康, 如甜食攝入過度會引發(fā)肥胖及其并發(fā)病癥。然而辣椒素具有多種藥理作用, 如增加能量消耗(Ludy & Mattes, 2011)、具有抗菌活性、影響腸道微生物群(Qin et al., 2014), 與癌癥、缺血性心臟病和呼吸系統(tǒng)疾病等引起的死亡率呈負相關(Lv et al., 2015)。與此同時, 中國辛辣食品的消費量較大, 尤其在西南地區(qū), 人們普遍“嗜辣”, 且辛辣食品消費率正在上升, 超過30%的成年人每天都會食用辛辣食物(Sunet al., 2014)。因此, 研究辣食渴求現(xiàn)象不僅可以進一步了解食物渴求背后的機制, 也有助于提高公眾健康。
為了考察中國人辣食渴求的認知神經(jīng)機制, 我們編制了中國文化背景下的辣食渴求問卷(周一舟, 2018), 并展開一系列辣食渴求的神經(jīng)機制研究。首先, 在一項fMRI研究中采用食物線索反應任務, 初步探索辣食渴求者的行為反應和神經(jīng)回路。行為結果表明, 辣食渴求者比非渴求者對辛辣食物的反應更快。腦成像結果發(fā)現(xiàn), 當暴露于含辣椒和不含辣椒的食物時, 辣食渴求者都比非渴求者在與食物和成癮物質線索反應有關的腦區(qū)中表現(xiàn)出更高的激活, 具體表現(xiàn)為獎賞(如, 腦島、殼核)、抑制控制(如, ACC)、視覺注意(如, 頂下小葉、舌回、楔前葉、梭狀回)相關腦區(qū)激活增強。同時, 在辣食渴求者中, 這些腦區(qū)(如, 腦島、殼核ACC、楔前葉)的β值變化與主觀辣食渴求呈正相關; 右頂葉下小葉β值的變化與辣食的攝入頻率相關(zhouet al., 2019)。一方面, 與一般食物渴求研究結果一致, 辣食渴求與食物獎勵、抑制控制和與視覺加工有關。另一方面, 該研究中關于腦島和頂下小葉的特異性激活更有助于我們理解辣食渴求者的神經(jīng)機制。其中, 腦島在監(jiān)測身體內(nèi)部狀態(tài)方面起著重要作用, 腦島激活增強可能反映了辣食渴求者在主觀上經(jīng)歷的軀體化和內(nèi)在感受過程(Sutherland et al., 2012); 頂下小葉是注意網(wǎng)絡的核心節(jié)點, 也與對條件線索的注意偏差有關, 并可能導致對線索的自動反應(Claus et al., 2013), 表明辣食渴求者對辣食的偏好反應可能反映了對辣食線索的注意分配更多。
此外, 采用go/no-go任務結合ERP技術探討辣食渴求者的抑制控制, 結果發(fā)現(xiàn)在辣食線索中, 辣食渴求者的N2b和P3波幅都顯著小于非渴求者, N2a沒有差異; 而在一般線索中, ERP成分沒有組間差異(王健美 等, 2020)。N2a無差異而N2b差異顯著可能表明, 兩組群體對辣食線索的早期認知資源投入相似, 但是辣食渴求者對辣食刺激有著更多的注意察覺。辣食渴求者的P3波幅更小表明他們對辣食線索的抑制控制能力更差。然而, 辣食渴求只對特定食物的抑制控制產(chǎn)生影響, 而不會影響一般抑制控制能力。
綜上所述, 一方面這些探索性發(fā)現(xiàn)符合一般食物渴求研究結果(Geliebter et al., 2016), 從辣食渴求的角度支持了背側紋狀體、ACC和腦島是食物渴求的基礎。也與食物渴求的自動行為傾向解釋相一致(Brockmeyer et al., 2015), 即辣食渴求者對辣食線索的自動行為傾向增強。另一方面, 在辣食渴求者抑制控制的結果中也顯示出不同于其他物質渴求者的特點。雖然感覺不受控是食物渴求和物質渴求共同的顯著特征(Goldstein, 2018), 辣食渴求者在辣食線索中也表現(xiàn)出抑制控制能力減弱, 但是他們對一般線索沒有形成這種不受控的認知神經(jīng)表現(xiàn)。
4 小結和展望
本文總結了中國文化背景下的限制性飲食和食物渴求的認知神經(jīng)機制研究。近幾年, 國內(nèi)研究者在飲食行為心理機制領域的探討比較前沿和深入。隨著當代中國社會中與節(jié)食和暴食有關的健康問題和隱患日益凸顯, 未來研究需從更全面視角探索限制性飲食和食物渴求的認知神經(jīng)表現(xiàn), 開發(fā)行之有效的干預方案, 緩解當前社會中節(jié)食、暴食等不健康問題。
第一, 國內(nèi)外研究發(fā)現(xiàn)限制性飲食者反而容易吃得更多, 即去抑制進食。國內(nèi)學者在中國文化背景下, 拓展了這種反向調(diào)節(jié)作用認知神經(jīng)證據(jù)。即, 基于享受美食-控制體重的目標沖突模型, 發(fā)現(xiàn)限制性飲食者的沖突控制能力較弱; 通過腦成像研究發(fā)現(xiàn)限制性飲食者獎賞-抑制相關腦區(qū)的改變。未來研究應考察健康青少年及成人以外的其他群體, 如厭食癥、暴食癥等飲食失調(diào)者, 尤其是處于重要發(fā)展階段的兒童。
第二, 通過區(qū)分限制性飲食者的亞型——成功和失敗的限制性飲食者, 國內(nèi)學者發(fā)現(xiàn)了節(jié)食成功與否的關鍵在于抑制控制及其相關腦區(qū)的變化。因此, 根據(jù)成功和失敗限制性飲食者的認知神經(jīng)表現(xiàn)差異, 未來可以開發(fā)并檢驗更有效的飲食行為干預方案, 服務于大眾身心健康。
第三, 食物渴求者對食物存在自動接近傾向, 并對食物的抑制控制能力更弱。食物渴求者的大腦激活與其他物質渴求研究結果具有相似性, 但是與其他危害性較強的物質渴求(如, 吸煙、飲酒、毒品等)相比, 食物渴求的危害性較小。因此, 食物渴求和其他物質渴求之間的相似和差異表現(xiàn)有待未來研究進行更具體地識別和區(qū)分。
第四, “嗜辣”是中國飲食文化中的特色之一, 尤其是西南地區(qū)。當前研究表明, 辣食渴求者只在辛辣食物中表現(xiàn)出抑制控制能力減弱以及相關腦區(qū)的變化, 在其他線索中的抑制控制未受損。然而, 中國人辣食渴求的研究剛剛興起, 研究結果仍然需要進一步證據(jù)的支持。未來有必要開展跨區(qū)域和跨文化的研究。
參考文獻
[1]
王健美, 劉永, 周一舟, 張露露, 尹明, 楊潤瀾, 陳紅. (2020).
辣食渴求者抑制控制能力的行為和ERP研究
心理科學, 43(1), 150-157.[本文引用: 1]
[2]
王劭睿, 陳紅. (2019).
為何越減越肥?——限制性飲食者過度進食的心理機制及影響因素
心理科學進展, 27(2), 322-328.[本文引用: 1]
[3]
張雪萌, 陳紅, 高笑, 江沂芯, 周一舟. (2016).
成功與失敗限制性飲食者對食物加工的能量效應:注意偏向的眼動追蹤
心理科學, 39(4), 956-963.[本文引用: 1]
[4]
周一舟. (2018). “辣食渴求者”線索反應的生理及神經(jīng)機制 (博士學位論文). 西南大學, 重慶.
[本文引用: 1]
[5]
Brockmeyer, T., Hahn, C., Reetz, C., Schmidt, U., & Friederich, H.-C. (2015).
Approach bias and cue reactivity towards food in people with high versus low levels of food craving
Appetite, 95, 197-202.DOI:10.1016/j.appet.2015.07.013 PMID:26184338 [本文引用: 2]
Even though people suffering from high levels of food craving are aware of the negative consequences of binge eating, they cannot resist. Automatic action tendencies (i.e. approach bias) towards food cues that operate outside conscious control may contribute to this dysfunctional behavior. The present study aimed to examine whether people with high levels of food craving show a stronger approach bias for food than those with low levels of food craving and whether this bias is associated with cue-elicited food craving.Forty-one individuals reporting either extremely high or extremely low levels of trait food craving were recruited via an online screening and compared regarding approach bias towards visual food cues by means of an implicit stimulus-response paradigm (i.e. the Food Approach-Avoidance Task). State levels of food craving were assessed before and after cue exposure to indicate food cue reactivity.As expected, high food cravers showed stronger automatic approach tendencies towards food than low food cravers. Also in line with the hypotheses, approach bias for food was positively correlated with the magnitude of change in state levels of food craving from pre-to post-cue exposure in the total sample.The findings suggest that an approach bias in early stages of information processing contributes to the inability to resist food intake and may be of relevance for understanding and treating dysfunctional eating behavior.Copyright ? 2015 Elsevier Ltd. All rights reserved.
[6]
Chen, S., Dong, D., Jackson, T., Su, Y., & Chen, H. (2016).
Altered frontal inter-hemispheric resting state functional connectivity is associated with bulimic symptoms among restrained eaters
Neuropsychologia, 81, 22-30.DOI:10.1016/j.neuropsychologia.2015.06.036 URL [本文引用: 1]
[7]
Chen, S., Dong, D., Jackson, T., Zhuang, Q., & Chen, H. (2017).
Trait-based food-cravings are encoded by regional homogeneity in the parahippocampal gyrus
Appetite, 114, 155-160.DOI:10.1016/j.appet.2017.03.033 URL [本文引用: 1]
[8]
Chen, S., Jackson, T., Dong, D., Zhuang, Q., & Chen, H. (2019).
Effects of palatable food versus thin figure conflicts on responses of young dieting women
Frontiers in Psychology, 10..[本文引用: 2]
[9]
Chen, S., Jia, Y., & Woltering, S. (2018).
Neural differences of inhibitory control between adolescents with obesity and their peers
International Journal of Obesity, 42(10), 1753-1761.DOI:10.1038/s41366-018-0142-x URL [本文引用: 1]
[10]
Claus, E. D., Blaine, S. K., Filbey, F. M., Mayer, A. R., & Hutchison, K. E. (2013).
Association between nicotine dependence severity, BOLD response to smoking cues, and functional connectivity
Neuropsychopharmacology, 38(12), 2363-2372.DOI:10.1038/npp.2013.134 PMID:23708507 [本文引用: 1]
Enhanced motivational salience towards smoking cues is a consequence of chronic nicotine use, but the degree to which this value increases beyond that of other appetitive cues is unknown. In addition, it is unclear how connectivity between brain regions influences cue reactivity and how cue reactivity and functional connectivity are related to nicotine dependence severity. This study examined neural responses during the presentation of smoking cues and appetitive control cues, as well as functional connectivity in 116 smokers with a range of nicotine dependence severity. Smoking cues elicited greater response above baseline than food cues in orbitofrontal cortex (OFC) and supplementary motor area (SMA) and less deactivation below baseline in middle frontal gyrus, inferior parietal lobe, and middle temporal gyrus. Psychophysiological interaction (PPI) analysis using right OFC as a seed revealed increased connectivity with somatosensory cortex and lateral inferior parietal lobe during smoking cues compared with food cues. Similarly, a PPI analysis using left insula as a seed showed stronger connectivity with somatosensory cortex, right insula, OFC, and striatum. Finally, relationships with nicotine dependence scores showed enhanced response in insula and dorsal anterior cingulate cortex in the smoking vs food comparison, and increased connectivity between insula and circuits involved in motivated behavior. Combined, these results suggest that smokers engage attentional networks and default mode networks involved in self-referential processing to a greater degree during smoking cues. In addition, individuals with greater nicotine dependence severity show increased engagement of sensorimotor and motor preparation circuits, suggesting increased reliance on habitual behavior.
[11]
Dong, D., Jackson, T., Wang, Y., & Chen, H. (2015).
Spontaneous regional brain activity links restrained eating to later weight gain among young women
Biological Psychology, 109, 176-183.DOI:10.1016/j.biopsycho.2015.05.003 URL [本文引用: 2]
[12]
Dong, D., Lei, X., Jackson, T., Wang, Y., Su, Y., & Chen, H. (2014).
Altered regional homogeneity and efficient response inhibition in restrained eaters
Neuroscience, 266, 116-126.DOI:10.1016/j.neuroscience.2014.01.062 PMID:24513387 [本文引用: 1]
Restrained eaters (REs) characterized by less efficient response inhibition are at risk for future onset of binge eating and bulimic pathology. Previous imaging studies investigating REs have been based on task-related functional magnetic resonance imaging (fMRI) and little is known about resting-state neural activity underlying restrained eating. To illuminate this issue, we investigated resting-state fMRI differences between REs (n=22) and unrestrained eaters (UREs) (n=30) using regional homogeneity (ReHo) analysis, which measures the temporal synchronization of spontaneous fluctuations. Samples were equated on body mass index (BMI) and caloric deprivation levels (i.e., 14±2.1h since last evening meal) before undergoing fMRI. Correlation analyses were performed between the ReHo index of identified regions and response inhibition based on stop-signal reaction time (SSRT) within each sample. Compared with UREs, REs showed more ReHo in brain regions associated with food reward (i.e., orbitofrontal cortex (OFC), dorsal-lateral prefrontal cortex (dlPFC)), attention (i.e., lingual gyrus, cuneus, inferior parietal lobule) and somatosensory functioning (i.e., paracentral lobule, anterior insula). In addition, ReHo values for the left dlPFC and left anterior insula, respectively, were negatively and positively correlated with SSRT among REs but not UREs. In concert with previous studies, these results suggest altered local synchronization may help to explain why dieting to maintain or lose weight often fails or increases risk for binge eating among REs. Copyright ? 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
[13]
Geliebter, A., Benson, L., Pantazatos, S. P., Hirsch, J., & Carnell, S. (2016).
Greater anterior cingulate activation and connectivity in response to visual and auditory high-calorie food cues in binge eating: Preliminary findings
Appetite, 96, 195-202.DOI:S0195-6663(15)00375-X PMID:26275334 [本文引用: 1]
Obese individuals show altered neural responses to high-calorie food cues. Individuals with binge eating [BE], who exhibit heightened impulsivity and emotionality, may show a related but distinct pattern of irregular neural responses. However, few neuroimaging studies have compared BE and non-BE groups. To examine neural responses to food cues in BE, 10 women with BE and 10 women without BE (non-BE) who were matched for obesity (5 obese and 5 lean in each group) underwent fMRI scanning during presentation of visual (picture) and auditory (spoken word) cues representing high energy density (ED) foods, low-ED foods, and non-foods. We then compared regional brain activation in BE vs. non-BE groups for high-ED vs. low-ED foods. To explore differences in functional connectivity, we also compared psychophysiologic interactions [PPI] with dorsal anterior cingulate cortex [dACC] for BE vs. non-BE groups. Region of interest (ROI) analyses revealed that the BE group showed more activation than the non-BE group in the dACC, with no activation differences in the striatum or orbitofrontal cortex [OFC]. Exploratory PPI analyses revealed a trend towards greater functional connectivity with dACC in the insula, cerebellum, and supramarginal gyrus in the BE vs. non-BE group. Our results suggest that women with BE show hyper-responsivity in the dACC as well as increased coupling with other brain regions when presented with high-ED cues. These differences are independent of body weight, and appear to be associated with the BE phenotype. Copyright ? 2015 Elsevier Ltd. All rights reserved.
[14]
Goldstein, R. (2018).
9. Cue-induced incubation of craving in human cocaine addiction: Modulation by reappraisal
Biological Psychiatry, 83(9), S3-S4.[本文引用: 1]
[15]
Hormes, J. M., & Meule, A. (2016).
Psychometric properties of the English Food Cravings Questionnaire-Trait-reduced (FCQ-T-r)
Eating Behaviors, 20, 34-38.DOI:10.1016/j.eatbeh.2015.11.011 PMID:26609669 [本文引用: 1]
Food cravings have been implicated in the development and maintenance of a range of eating- and weight-related pathology. The rapid and accurate assessment of food cravings is thus critical in clinical and research settings. Existing measures of specific food cravings are often not suitable for capturing the multiple facets of the craving experience. A short version of the Food Cravings Questionnaire-Trait (FCQ-T), the most widely used measure of general food cravings, was recently developed in German and shown to be a one-factorial, internally reliable measure. Other recent studies validated an Italian and Spanish version of the FCQ-T-reduced (FCQ-T-r) and successfully replicated its basic psychometrics. This study sought to examine the psychometric properties of the English version of the FCQ-T-r. Undergraduate students (n=610, 51.0% female, 53.9% white/Caucasian) completed a battery of questionnaires containing the FCQ-T-r and measures of specific food cravings, eating style, eating disorder symptoms, weight dissatisfaction, and impulsivity. Even though results of a confirmatory factor analysis suggested poor fit with a one-factorial model, the FCQ-T-r was found to be a one-factorial measure in both principal component and parallel analysis. The FCQ-T-r demonstrated excellent internal consistency reliability (Cronbach's α=.94), and scores were significantly and positively correlated with measures of specific food cravings, restrained eating, eating disorder symptoms, and impulsivity. More work is needed to confirm the factor structure of the English FCQ-T-r, but preliminary findings suggest that it constitutes a valid and reliable alternative to lengthier measures of general food cravings. Copyright ? 2015 Elsevier Ltd. All rights reserved.
[16]
Jones, A., Robinson, E., Duckworth, J., Kersbergen, I., Clarke, N., & Field, M. (2018).
The effects of exposure to appetitive cues on inhibitory control: A meta-analytic investigation
Appetite, 128, 271-282.DOI:10.1016/j.appet.2018.06.024 URL [本文引用: 1]
[18]
Kober, H., & Boswell, R. G. (2018).
Potential psychological & neural mechanisms in binge eating disorder: Implications for treatment
Clinical Psychology Review, 60, 32-44.DOI:S0272-7358(17)30190-3 PMID:29329692 [本文引用: 1]
Binge Eating Disorder (BED) is a newly-established eating disorder diagnosis in the 5th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5). Although systematic research on BED is in its infancy and many studies feature small samples, several observations emerge. First, we review diagnostic, developmental, and socio-demographic features of BED. Next, although BED and obesity are linked and frequently co-occur, we review data suggesting that BED is a distinct phenotype. Importantly, we take a mechanism-focused approach and propose four psychological processes with neurobiological bases that may uniquely differentiate BED from obesity: emotion reactivity, food-cue reactivity, food craving, and cognitive control. Further, we propose that interactions between impairments in cognitive control and increased emotional reactivity, food-cue reactivity, and craving may underlie emotion dysregulation and promote binge eating. Consistently, neuroimaging studies point towards neural alterations in the response to rewards and to food specifically, and suggest preliminary links between impaired cognitive-control-related neural activity and binge eating. However, additional systematic work is required in this area. We conclude with a detailed review of treatment approaches to BED; specifically, we suggest that psychological and pharmacological treatments that target core mechanisms - including cognitive control and emotion/craving dysregulation - may be particularly effective.Copyright ? 2018 Elsevier Ltd. All rights reserved.
[19]
Kober, H., & Mell, M. M. (2015).
Neural mechanisms underlying craving and the regulation of craving
The Wiley Handbook on the Cognitive Neuroscience of Addiction, 195-218.[本文引用: 1]
[20]
Kong, F., Zhang, Y., & Chen, H. (2015).
Inhibition ability of food cues between successful and unsuccessful restrained eaters: A two-choice oddball task
PLos ONE, 10(4), 741-752.[本文引用: 1]
[21]
Liu, Y., Zhang, L., Jackson, T., Wang, J., Yang, R., & Chen, H. (2020).
Effects of negative mood state on event-related potentials of restrained eating subgroups during an inhibitory control task
Behavioural Brain Research, 377, 112249.DOI:10.1016/j.bbr.2019.112249 URL [本文引用: 2]
[22]
Ludy, M.-J., & Mattes, R. D. (2011).
The effects of hedonically acceptable red pepper doses on thermogenesis and appetite
Physiology & Behavior, 102(3-4),251-258.[本文引用: 1]
[23]
Lv, J., Qi, L., Yu, C., Yang, L., Guo, Y., Chen, Y., ... Li, L. (2015).
Consumption of spicy foods and total and cause specific mortality: Population based cohort study
The British Medical Journal, 351, h3942.[本文引用: 1]
[24]
Ma, Y., Ratnasabapathy, R., & Gardiner, J. (2017).
Carbohydrate craving: Not everything is sweet
Current Opinion in Clinical Nutrition and Metabolic Care, 20(4), 261-265.DOI:10.1097/MCO.0000000000000374 URL [本文引用: 1]
[25]
Meule, A., & Hormes, J. M. (2015).
Chocolate versions of the Food Cravings Questionnaires. Associations with chocolate exposure-induced salivary flow and ad libitum chocolate consumption
Appetite, 91, 256-265.DOI:10.1016/j.appet.2015.04.054 URL [本文引用: 1]
[26]
Meule, A., & Kubler, A. (2014).
Double trouble. Trait food craving and impulsivity interactively predict food-cue affected behavioral inhibition
Appetite, 79, 174-182.DOI:10.1016/j.appet.2014.04.014 URL [本文引用: 1]
[27]
Noori, H. R., Linan, A. C., & Spanagel, R. (2016).
Largely overlapping neuronal substrates of reactivity to drug, gambling, food and sexual cues: A comprehensive meta-analysis
European Neuropsychopharmacology, 26(9), 1419-1430.DOI:10.1016/j.euroneuro.2016.06.013 URL [本文引用: 1]
[28]
Pires, L., Leit?o, J., Guerrini, C., & Sim?es, M. R. (2014).
Event-related brain potentials in the study of inhibition: Cognitive control, source localization and age-related modulations
Neuropsychological Review, 24(4), 461-490.DOI:10.1007/s11065-014-9275-4 URL [本文引用: 1]
[29]
Polivy, J., Herman, C. P., & Mills, J. S. (2020).
What is restrained eating and how do we identify it
Appetite, 155, 104802.[本文引用: 2]
[30]
Qin, N., Yang, F., Li, A., Prifti, E., Chen, Y., Shao, L., ... Li, L. (2014).
Alterations of the human gut microbiome in liver cirrhosis
Nature, 513(7516), 59-64.DOI:10.1038/nature13568 URL [本文引用: 1]
[31]
Rolls, E. T., & McCabe, C. (2007).
Enhanced affective brain representations of chocolate in cravers vs. non-cravers
European Journal of Neuroscience, 26(4), 1067-1076.DOI:10.1111/j.1460-9568.2007.05724.x URL [本文引用: 1]
[32]
Schaumberg, K., Anderson1, D. A., Anderson, L. M., Reilly, E. E., & Gorrell, S. (2016).
Dietary restraint: What's the harm? A review of the relationship between dietary restraint, weight trajectory and the development of eating pathology
Clinical Obesity, 6, 89-100.DOI:10.1111/cob.12134 URL [本文引用: 1]
[33]
Song, S., Zhang, Y., Qiu, J., Li, X., Ma, K., Chen, S., & Chen, H. (2019).
Brain structures associated with eating behaviors in normal-weight young females
Neuropsychologia, 133, 107171.DOI:10.1016/j.neuropsychologia.2019.107171 URL [本文引用: 1]
[34]
Stopyra, M. A., Simon, J. J., Skunde, M., Walther, S., Bendszus, M., Herzog, W., & Friederich, H. C. (2019).
Altered functional connectivity in binge eating disorder and bulimia nervosa: A resting-state fmri study
Brain and Behavior, 9(2), e01207.DOI:10.1002/brb3.2019.9.issue-2 URL [本文引用: 1]
[35]
Stroebe, W., van Koningsbruggen, G. M., Papies, E. K., & Aarts, H. (2013).
Why most dieters fail but some succeed: A goal conflict model of eating behavior
Psychological Review, 120(1), 110-138.DOI:10.1037/a0030849 URL [本文引用: 1]
[36]
Su, Y., Jackson, T., Wei, D., Qiu, J., & Chen, H. (2017).
Regional gray matter volume is associated with restrained eating in healthy Chinese young adults: Evidence from voxel-based morphometry
Frontiers in Psychology, 8, 443.[本文引用: 1]
[37]
Sun, D., Lv, J., Chen, W., Li, S., Guo, Y., Bian, Z., ... Li, L. (2014).
Spicy food consumption is associated with adiposity measures among half a million Chinese people: The China kadoorie biobank study
BMC Public Health, 14(1), 1293.DOI:10.1186/1471-2458-14-1293 URL [本文引用: 1]
[38]
Sutherland, M. T., McHugh, M. J., Pariyadath, V., & Stein, E. A. (2012).
Resting state functional connectivity in addiction: Lessons learned and a road ahead
NeuroImage, 62(4), 2281-2295.DOI:10.1016/j.neuroimage.2012.01.117 PMID:22326834 [本文引用: 1]
Despite intensive scientific investigation and public health imperatives, drug addiction treatment outcomes have not significantly improved in more than 50 years. Non-invasive brain imaging has, over the past several decades, contributed important new insights into the neuroplastic adaptations that result from chronic drug intake, but additional experimental approaches and neurobiological hypotheses are needed to better capture the totality of the motivational, affective, cognitive, genetic and pharmacological complexities of the disease. Recent advances in assessing network dynamics through resting-state functional connectivity (rsFC) may allow for such systems-level assessments. In this review, we first summarize the nascent addiction-related rsFC literature and suggest that in using this tool, circuit connectivity may inform specific neurobiological substrates underlying psychological dysfunctions associated with reward, affective and cognitive processing often observed in drug addicts. Using nicotine addiction as an exemplar, we subsequently provide a heuristic framework to guide future research by linking recent findings from intrinsic network connectivity studies with those interrogating nicotine's neuropharmacological actions. Emerging evidence supports a critical role for the insula in nicotine addiction. Likewise, the anterior insula, potentially together with the anterior cingulate cortex, appears to pivotally influence the dynamics between large-scale brain networks subserving internal (default-mode network) and external (executive control network) information processing. We suggest that a better understanding of how the insula modulates the interaction between these networks is critical for elucidating both the cognitive impairments often associated with withdrawal and the performance-enhancing effects of nicotine administration. Such an understanding may be usefully applied in the design and development of novel smoking cessation treatments.Published by Elsevier Inc.
[39]
Tepper, B. J., Keller, K. L., & Ullrich, N. V. (2004). Genetic variation in taste and preferences for bitter and pungent foods: Implications for chronic disease risk(pp.60-74). Challenges in Taste Chemistry and Biology.
[本文引用: 1]
[40]
Wang, Y., Dong, D., Jackson, T., Jie, D., Zhou, Y., Hui, L., & Chen, H. (2016).
Neural correlates of restrained eaters' high susceptibility to food cues: An fMRI study
Neuroscience Letters, 631, 56-62.DOI:S0304-3940(16)30588-2 PMID:27524674 [本文引用: 2]
Many studies have reported that specific susceptibility to food cues plays an important role in disordered eating behavior. However, whether restraint status modulates the neural bases of attentional bias to different types of food cues remains unknown. Thus, functional magnetic resonance imaging (fMRI) was conducted in individuals (12 restraint eaters, 12 unrestraint eaters) exposed to high/low-energy food and neutral images while performing a two-choice oddball task. The results indicated that restrained eaters responded more quickly to high-energy food images than to neutral and low-energy food images. More notably, compared with unrestrained eaters, restrained eaters showed faster reaction times, hyper-activation in a much wider array of reward (e.g., insula/orbitofrontal cortex), attention (superior frontal gyrus) and visual processing (e.g., superior temporal gyrus) regions, and hypo-activation in cognitive control areas (e.g., anterior cingulate) in response to high-energy food cues. Furthermore, among restrained eaters, the longest reaction times were found for low-energy food images, and activation of the attention and visual-related cortex (e.g., superior parietal gyrus) in the low-neutral contrast condition was significantly stronger than in unrestrained eaters. These findings contribute to our understanding of susceptibility to food cues: in addition to the special sensitivity (attentional bias) to high-energy food images, restrained eaters may also be more sensitive (allocate more attentional resources) to low-energy food images. These potential neural bases of restrained eaters may help clarify why dieting to lose or maintain weight is so often unsuccessful. Copyright ? 2016 Elsevier Ireland Ltd. All rights reserved.
[41]
Weygandt, M., Mai, K., Dommes, E., Ritter, K., Leupelt, V., Spranger, J., & Haynes, J.-D. (2015).
Impulse control in the dorsolateral prefrontal cortex counteracts post-diet weight regain in obesity
NeuroImage, 109, 318-327.DOI:10.1016/j.neuroimage.2014.12.073 PMID:25576647 [本文引用: 1]
A variety of studies suggest that efficient treatments to induce short-term dietary success in obesity exist. However, sustained maintenance of reduced weight is rare as a large proportion of patients start to regain weight when treatment is discontinued. Thus, from a clinical perspective, it would be desirable to identify factors that counteract post-diet weight regain across longer time-scales. To address this question, we extended our previous work on neural impulse control mechanisms of short-term dietary success in obesity and now investigated the mechanisms counteracting long-term weight regain after a diet. Specifically, we measured neural impulse control during a delay discounting task with fMRI at two time points, i.e. the beginning ('T0') and the end ('T12') of a one-year follow-up interval after a 12-week diet. Then, we tested whether activity in the dorsolateral prefrontal cortex (DLPFC) at T0 and whether activity changes across the follow-up period (T0-T12) are linked to success in weight maintenance. The analyses conducted show that control-related DLPFC activity at T0 was coupled to the degree of success in weight maintenance. Consistently, also behavioral measures of control were linked to the degree of success in maintenance. A direct comparison of neural and behavioral control parameters for prognostic weight change modeling revealed that neural signals were more informative. Taken together, neural impulse control in the DLPFC measured with fMRI directly after a diet predicts real-world diet success in obese patients across extended time periods. Copyright ? 2015 Elsevier Inc. All rights reserved.
[42]
Yao, L., Li, W., Dai, Z., & Dong, C. (2016).
Eating behavior associated with gray matter volume alternations: A voxel based morphometry study
Appetite, 96, 572-579.DOI:10.1016/j.appet.2015.10.017 URL [本文引用: 1]
[43]
Zhang, X., Luo, Y., Liu, Y., Yang, C., & Chen, H. (2019).
Lack of conflict during food choice is associated with the failure of restrained eating
Eating Behaviors, 34, 101309.DOI:10.1016/j.eatbeh.2019.101309 URL [本文引用: 2]
[44]
Zhang, Y., Wang, S., Wei, L., Jackson, T., Gao, X., Xiao, M. Y., ... Chen, H. (2020).
Resting state differences between successful and unsuccessful restrained eaters
Brain Imaging and Behavior, 6.[本文引用: 1]
[45]
Zhou, Y., Gao, X., Small, D. M., & Chen, H. (2019).
Extreme spicy food cravers displayed increased brain activity in response to pictures of foods containing chili peppers: An fMRI study
Appetite, 142, 104379.DOI:10.1016/j.appet.2019.104379 URL [本文引用: 2]
[46]
Zhou, Y., Liu, Y., Du, J., & Chen, H. (2018).
Effects of food exposure on food-related inhibitory control in restrained eaters: An ERP study
Neuroscience Letters, 672, 130-135.DOI:10.1016/j.neulet.2018.02.048 URL [本文引用: 2]
相關知識
心理學部教授團隊在Appetite發(fā)文揭示超重肥胖人群食物相關抑制控制的神經(jīng)機制
控制熱量 or 間歇性禁食,哪個更好?最新Nature:熱量限制和飲食限制有不同減肥、延壽效果,遺傳對壽命的影響始終大于飲食控制
要限制糖尿病人的飲食
神經(jīng)性厭食癥
植物性食品原料安全的控制概述
熱量限制
飲食有節(jié)制可以讓人更長壽
渴望性愛=“老不正經(jīng)”?
怎么控制飲食減肥
有機認證,中國有機食品認證網(wǎng)
網(wǎng)址: 中國人限制性飲食和食物渴求的認知神經(jīng)機制 http://m.u1s5d6.cn/newsview171764.html
推薦資訊
- 1發(fā)朋友圈對老公徹底失望的心情 12775
- 2BMI體重指數(shù)計算公式是什么 11235
- 3補腎吃什么 補腎最佳食物推薦 11199
- 4性生活姿勢有哪些 盤點夫妻性 10425
- 5BMI正常值范圍一般是多少? 10137
- 6在線基礎代謝率(BMR)計算 9652
- 7一邊做飯一邊躁狂怎么辦 9138
- 8從出汗看健康 出汗透露你的健 9063
- 9早上怎么喝水最健康? 8613
- 10五大原因危害女性健康 如何保 7826