首頁 資訊 基于紅外視頻識(shí)別的鋰電池健康狀態(tài)快速檢測

基于紅外視頻識(shí)別的鋰電池健康狀態(tài)快速檢測

來源:泰然健康網(wǎng) 時(shí)間:2025年06月09日 14:32

基于紅外視頻識(shí)別的鋰電池健康狀態(tài)快速檢測

作者單位:

東華理工大學(xué)機(jī)械與電子工程學(xué)院 南昌 330013

基金項(xiàng)目:

江西省科技合作專項(xiàng)重點(diǎn)項(xiàng)目(20212BDH80008)、國家自然科學(xué)基金(12165001)、科技部常規(guī)性科技援外項(xiàng)目(KY201702002)、江西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(20181BBE58006)資助

Rapid detection of lithium battery health status based on infrared video recognition

Author:

Wang Zhicheng

Wang Zhicheng

School of Mechanical and Electronic Engineering,East China University of Technology, Nanchang 330013, China
在期刊界中查找
在百度中查找
在本站中查找

Wang Zhe

Wang Zhe

School of Mechanical and Electronic Engineering,East China University of Technology, Nanchang 330013, China
在期刊界中查找
在百度中查找
在本站中查找

Wang Zewang

Wang Zewang

School of Mechanical and Electronic Engineering,East China University of Technology, Nanchang 330013, China
在期刊界中查找
在百度中查找
在本站中查找

Zhao Jie

Zhao Jie

School of Mechanical and Electronic Engineering,East China University of Technology, Nanchang 330013, China
在期刊界中查找
在百度中查找
在本站中查找

Shu Dengfeng

Shu Dengfeng

School of Mechanical and Electronic Engineering,East China University of Technology, Nanchang 330013, China
在期刊界中查找
在百度中查找
在本站中查找

Affiliation:

School of Mechanical and Electronic Engineering,East China University of Technology, Nanchang 330013, China

摘要 | | 訪問統(tǒng)計(jì) | | | || 文章評(píng)論

摘要:

針對退役動(dòng)力電池梯次利用過程中對電池健康狀態(tài)快速檢測的需求,本文以軟包磷酸鐵鋰電池為研究對象,提出基于紅外熱成像的鋰電池健康狀態(tài)快速檢測方法。通過改變電池充電和放電電流倍率,研究不同老化程度的電池在放電過程中的溫度變化情況,采集放電過程中的紅外熱成像視頻,建立電池健康狀態(tài)與紅外熱成像特征的對應(yīng)關(guān)系,以此作為電池健康狀態(tài)檢測的健康因子;構(gòu)建基于SlowFast-LSTM深度學(xué)習(xí)網(wǎng)絡(luò)模型的改進(jìn)型視頻識(shí)別算法,對于電池健康狀態(tài)0~40%、40%~50%、50%~60%、60%~70%、70%~80%、80%~100%這6種類別的識(shí)別率達(dá)到80.78%,單次電池檢測時(shí)間3 min,實(shí)現(xiàn)電池健康狀態(tài)的快速檢測。

Abstract:

To meet the demand for rapid detection of battery health status in the process of retired power battery recycling, this paper takes soft pack lithium iron phosphate batteries as the research object and proposes a rapid detection method of lithium battery health status based on infrared thermal imaging. By changing the battery charging and discharging current multipliers, the temperature changes of batteries with different aging degrees during the discharge process are studied, and the infrared thermographic video during the discharge process is collected to establish the correspondence between the battery health state and the infrared thermographic features, which is used as the health factor for battery health state detection; an improved video recognition algorithm based on SlowFast-LSTM deep learning network model is constructed for battery health state detection. The improved video recognition algorithm achieves an average recognition rate of 80.78% for the six categories of battery health state 0~40%, 40%~50%, 50%~60%, 60%~70%, 70%~80% and 80%~100%, and a single battery detection time of 3 minutes, which enables fast detection of battery health state.

引用本文

汪志成,王哲,王澤旺,趙杰,束登峰.基于紅外視頻識(shí)別的鋰電池健康狀態(tài)快速檢測[J].電子測量技術(shù),2023,46(13):185-192

復(fù)制

分享 文章指標(biāo) 點(diǎn)擊次數(shù):1053 下載次數(shù): 819 HTML閱讀次數(shù): 0 文章二維碼

相關(guān)知識(shí)

基于紅外視頻識(shí)別的鋰電池健康狀態(tài)快速檢測
一種鋰電池健康狀態(tài)快速檢測裝置及方法2024.pdf專利下載
? 鋰電池健康狀態(tài)快速檢測解決方案:SBT 1000 Series
筆記本電池狀態(tài)和電池檢測方法詳解【鉅大鋰電】
及云智能申請車輛電池健康狀態(tài)檢測專利,實(shí)現(xiàn)對磷酸鐵鋰電池健康狀態(tài)的有效檢測
一種鋰電池健康狀態(tài)快速檢測方法及系統(tǒng)2024.pdf專利下載
阻抗法分析監(jiān)測鋰電的荷電狀態(tài),健康狀態(tài)和內(nèi)部溫度(阻抗知識(shí)不扎實(shí)更要看)
基于新健康因子的鋰電池健康狀態(tài)估計(jì)和剩余壽命預(yù)測
電池荷電量及電池健康狀態(tài)的檢測、診斷方法.pdf
電池荷電量及電池健康狀態(tài)的檢測、診斷方法

網(wǎng)址: 基于紅外視頻識(shí)別的鋰電池健康狀態(tài)快速檢測 http://m.u1s5d6.cn/newsview1388036.html

推薦資訊