綠茶、橘皮、大豆中酚類物質(zhì)體外消化前后穩(wěn)定性及抗氧化活性的研究
摘要: 本研究以富含3類代表性酚類化合物(黃烷醇、黃烷酮和異黃酮)的3種食物(綠茶、橘皮、大豆)作為原料,模擬其在人體口胃腸中的體外消化過程。采用高效液相色譜-二極管陣列檢測器/電噴霧-四極桿-飛行時(shí)間串聯(lián)質(zhì)譜檢測器(HPLC-DAD/ESI-Q-TOF-MS)檢測體外消化前后酚類化合物的種類及含量變化,同時(shí)測定不同消化階段總酚含量(TPC)、總黃酮含量(TFC)以及抗氧化活性(DPPH、ABTS、FRAP、ORAC)的變化。結(jié)果表明,綠茶提取物中檢測出4種酚類化合物(表沒食子兒茶素、(+)-兒茶素、表沒食子兒茶素沒食子酸酯和表兒茶素沒食子酸酯),大豆提取物中檢測出4種酚類化合物(大豆苷、染料木苷、大豆苷元和染料木素),橘皮提取物中檢測出2種酚類化合物(柚皮苷和橙皮苷);三種食物提取物中,經(jīng)過體外消化后,綠茶提取物中的酚類化合物最不穩(wěn)定,除(+)-兒茶素外,其余3種酚類物質(zhì)幾乎降解完全,損失率均達(dá)95%以上。綠茶、橘皮、大豆提取物的TPC在胃消化階段顯著升高(P<0.05),在腸消化階段顯著降低(P<0.05)。綠茶提取物TFC在口腔和胃消化階段顯著升高(P<0.05),在腸消化階段顯著降低(P<0.05)。橘皮、大豆提取物TFC與TPC變化趨勢一致。綠茶提取物的四種抗氧化活性經(jīng)胃腸消化后呈先升高再降低的趨勢。大豆提取液體外消化前后ABTS、FRAP抗氧化活性在口腔階段顯著降低(P<0.05),DPPH、ORAC抗氧化活性在口腔、胃消化階段顯著升高(P<0.05),在腸消化階段顯著降低(P<0.05)。橘皮提取液ORAC抗氧化活性在腸消化階段顯著升高(P<0.05),ABTS、FRAP抗氧化活性在體外消化階段均表現(xiàn)出和總酚含量變化一致的趨勢。
Abstract: In this study, three kinds of foods (green tea, citrus peel and soybean) rich in three representative phenolic compounds (flavanols, flavanones and isoflavones) were used as raw materials to simulate the in vitro digestion process in human oral and gastrointestinal tract. High performance liquid chromatography diode array detector/electrospray ionization quadrupole time of flight mass spectrometry detector (HPLC-DAD/ESI-Q-TOF-MS) was used to detect the variety and content of phenolic compounds before and after the in vitro digestion. The total phenol content (TPC), total flavonoids content (TFC) and antioxidant activity (DPPH, ABTS, FRAP, ORAC) in different digestion stages were determined. The results showed that four phenolic compounds (epigallocatechin, (+)-catechin, epigallocatechin gallate, epigallocatechin gallate) were detected in green tea extract, four phenolic compounds (daidzin, genistin, daidzein and genistein) were detected in soybean extract, and two phenolic compounds (naringin, hesperidin) were detected in citrus peel extract. Among the three food extracts, phenolic compounds in the green tea extract were the most unstable after in vitro digestion, except (+) -catechin, the other three phenolic compounds were almost completely degraded, the loss rate was more than 95%. TPC of green tea, citrus peel and soybean extracts was significantly increased in gastric digestion stage (P<0.05), and significantly decreased in intestinal digestion stage (P<0.05). TFC of green tea extract was significantly increased in oral and gastric digestion stage (P<0.05), and significantly decreased in intestinal digestion stage (P<0.05). TFC and TPC of citrus peel and soybean extract had the same change trend. The four antioxidant activities of green tea extract increased first and then decreased after gastrointestinal digestion. Antioxidant activities of ABTS, FRAP of soybean extract were significantly decreased in oral phase (P<0.05), antioxidant activities of DPPH, ORAC were significantly increased in oral and gastric digestion phase (P<0.05), and significantly decreased in intestinal digestion phase (P<0.05). The ORAC antioxidant activity of citrus peel extract was significantly increased in intestinal digestion stage (P<0.05), and the antioxidant activity of ABTS and FRAP showed a trend consistent with the change of total phenol content in in vitro digestion stage.
圖 1 模擬體外消化過程中綠茶提取物中酚類物質(zhì)的HPLC圖譜變化
注:1:表沒食子兒茶素;2:(+)-兒茶素;3:表沒食子兒茶素沒食子酸酯;4:表兒茶素沒食子酸酯。
Figure 1. HPLC chromatogram changes of polyphenols in green tea extract during simulated in vitro digestion
圖 2 模擬體外消化過程中橘皮提取物中酚類物質(zhì)的HPLC圖譜變化
注:1:柚皮苷;2:橙皮苷。
Figure 2. HPLC chromatogram changes of polyphenols in citrus peel extract during simulated in vitro digestion
圖 3 模擬體外消化過程中大豆提取物中酚類物質(zhì)的 HPLC 圖譜變化
注:1:大豆苷;2:染料木苷;3:大豆苷元;4:染料木素。
Figure 3. HPLC chromatogram changes of polyphenols in soybean extract during simulated in vitro digestion
圖 4 大豆、綠茶、橘皮三種提取物體外消化前后總酚含量變化
注:同一樣品不同字母表示差異顯著(P<0.05);圖5同。
Figure 4. Changes of total phenolic content of soybean, green tea and citrus peel extracts during simulated in vitro digestion
圖 5 大豆、綠茶、橘皮三種提取物體外消化前后總黃酮含量變化
Figure 5. Changes of total flavonoids content of soybean, green tea and citrus peel extracts during simulated in vitro digestion
表 1 模擬消化液儲備液的制備
Table 1 Preparation of stock solutions of simulated digestion fluids
主要成分各成分濃度(mol/L)模擬口腔消化電解質(zhì)儲備液pH7模擬胃液消化電解質(zhì)儲備液pH3模擬腸液消化電解質(zhì)儲備液pH7體積(mL)濃度(mol/L)體積(mL)濃度(mol/L)體積(mL)濃度(mol/L) NaCl2——11.847.29.638.4NaHCO316.813.612.52542.585KCl0.515.115.16.96.96.86.8KH2PO40.53.73.70.90.90.80.8(NH4)2CO30.50.060.060.50.5——MgCl2(H2O)60.150.50.150.40.11.10.33
表 2 綠茶、橘皮、大豆高效液相色譜條件
Table 2 High performance liquid chromatography of green tea, citrus peel and soybean
物質(zhì)檢測波長(nm)流速(mL/min)柱溫(℃)進(jìn)樣量(μL)梯度洗脫條件 綠茶2700.530100~10 min:3%B;10~15 min:3%B~10%B;15~20 min:10%B~20%B;20~25 min:20%B~25%B;25~30 min:25%B~30%B;
30~35 min:30%B~35%B;35~40 min:35%B~3%B;40~45 min:3%B橘皮2800.530100~5 min:16%B~16%B;5~5.5 min:16%B~22%B;
5.5~16.5 min:22%B~22%B;16.5~18.5 min:22%B~50%B;
18.5~20.5 min:50%B~39%B;20.5~30 min:39%B~39%B大豆2600.530100~10 min:12%B~18%B;10~23 min:18%B~24%B;
23~30 min:24%B~30%B;30~50 min:30%B;50~55 min:
30%B~80%B;55~56 min:80%B~12%B;56~60 min:12%B~12%B
表 3 模擬體外消化過程中綠茶提取物中酚類物質(zhì)的組分變化
Table 3 Component changes of polyphenols in green tea extract during simulated in vitro digestion
編號保留時(shí)間(min)分子式[M-H]-m/z主要碎片離子化合物名稱口消化損失率(%)胃消化損失率(%)腸消化損失率(%) 117.859C15H14O7305.0670167.0947,125.0246,111.049表沒食子兒茶素21.4314.6598.48218.558C15H14O6289.0725245.0815,205.0500,179.0345,125.0243(+)-兒茶素7.7516.6689.11320.639C22H18O11457.0786306.0201,193.0141,169.0146,
125.0244表沒食子兒茶素沒食子酸酯52.8734.8899.71423.156C22H18O10441.0837289.0714,271.0605,269.052,
125.0240表兒茶素沒食子酸酯52.3337.7199.75
表 4 模擬體外消化過程中橘皮提取物中酚類物質(zhì)的組分變化
Table 4 Component changes of polyphenols in citrus peel extract during simulated in vitro digestion
編號保留時(shí)間(min)分子式[M-H]-m/z主要碎片離子化合物名稱口消化損失率(%)胃消化損失率(%)腸消化損失率(%) 18.926C27H32O14579.1753272.0654,151.0039,119.0504柚皮苷5.393.511.64210.106C28H34O15609.1863302.0760,286.0486,242.0584,164.0114,125.0246橙皮苷15.0513.6516.19
表 5 模擬體外消化過程中大豆提取物中酚類物質(zhì)的組分變化
Table 5 Component changes of polyphenols in soybean extract during simulated in vitro digestion
編號保留時(shí)間(min)分子式[M-H]-m/z主要碎片離子化合物名稱口消化損失率(%)胃消化損失率(%)腸消化損失率(%) 17.137C21H20O9461.1116253.0503大豆苷21.3626.8431.22211.863C21H20O10431.0997269.0463染料木苷29.7932.9949.13313.368C15H10O4253.0518180.0585,133.0296大豆苷元5.455.0759.74418.940C15H10O5269.0466133.0300,107.0141染料木素24.1522.0144.94表 6 三種提取物體外消化前后的抗氧化活性變化
Table 6 Changes of antioxidant activities of three extracts during simulated in vitro digestion
樣品消化階段ABTS(μmol TE/g DW)DPPH(μmol TE/g DW)FRAP(μmol TE/g DW)ORAC(μmol TE/g DW) 綠茶未消化986.59±9.86a954.66±18.77b621.25±14.93a2742.45±156.45a口消化707.73±16.84c711.53±18.23c508.13±37.44c1092.35±40.65c胃消化935.33±18.92b1159.89±70.16a572.50±5.00b1290.12±51.47b腸消化420.77±20.84d378.12±8.53d212.50±4.12d997.85±68.89c大豆未消化14.95±0.08b11.62±0.89c6.48±0.29b38.76±0.64c口消化11.95±0.67c13.64±0.85b5.71±0.29c88.67±10.31b胃消化18.23±0.13a17.86±0.72a7.19±0.23a179.28±3.80a腸消化9.11±0.10d4.64±0.08d5.72±0.21c23.26±0.32d橘皮未消化79.91±0.17b37.11±0.24b57.58±1.44a335.50±74.15c口消化72.44±1.85c41.74±1.27a46.17±1.53b319.53±63.11c胃消化86.35±0.88a28.60±1.13c55.83±2.89a501.64±62.77b腸消化39.51±0.99d28.39±1.57c48.23±2.14b649.00±18.05a 注:同一樣品同列不同字母表示差異顯著(P<0.05)。 [1] 劉昕皓, 魏粉菊, 王學(xué)順, 等. 多酚類化合物的生物活性研究進(jìn)展[J]. 中國醫(yī)藥工業(yè)雜志,2021,52(4):471?483. [LIU Xinhao, WEI Fenju, WANG Xueshun, et al. Progress on biological activities of polyphenols[J]. Chinese Journal of Pharmaceuticals,2021,52(4):471?483.LIU Xinhao, WEI Fenju, WANG Xueshun, et al. Progress on biological activities of polyphenols[J]. Chinese Journal of Pharmaceuticals 2021, 52(4): 471-483.
[2] 董夢依. 幾種黃酮類化合物抗氧化、抗腫瘤活性研究及構(gòu)效關(guān)系初探[D]. 南昌: 南昌大學(xué), 2019.DONG Mengyi. Study on the antioxidant and antitumor activities of several flavonoids and their structure-activity relationship[D]. Nanchang: Nanchang University, 2019.
[3] 朱秀靈, 葉精勤, 盛伊健, 等. 體外模擬消化對蘋果多酚及其抗氧化活性的影響[J]. 食品與發(fā)酵工業(yè),2020,46(8):63?71. [ZHU Xiuling, YE Jingqin, SHENG Yijian, et al. Effects of in vitro simulated digestion on apple polyphenols and their antioxidant activities[J]. Food and Fermentation Industries,2020,46(8):63?71.ZHU Xiuling, YE Jingqin, SHENG Yijian, et al. Effects of in vitro simulated digestion on apple polyphenols and their antioxidant activities[J]. Food and Fermentation Industries, 2020, 46(8): 63-71.
[4]SU D, LIU H, ZENG Q, et al. Changes in the phenolic contents and antioxidant activities of citrus peels from different cultivars after in vitro digestion[J]. International Journal of Food Science & Technology,2017,52(11):2471?2478.
[5]GUO Y, MA M, JIANG F, et al. Protein quality and antioxidant properties of soymilk derived from black soybean after in vitro simulated gastrointestinal digestion[J]. International Journal of Food Science & Technology,2020,55(2):720?728.
[6]MINEKUS M, ALMINGER M, ALVITO P, et al. A standardised static in vitro digestion method suitable for food-an international consensus[J]. Food & Function,2014,5(6):1113?1124.
[7]WANG S, MECKLING K A, MARCONE M F, et al. Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacities[J]. Journal of Agricultural & Food Chemistry,2011,59(3):960?968.
[8] 楊二林, 趙浩安, 徐元元, 等. 棗花蜜酚類化合物組成及其抗氧化活性分析[J]. 食品科學(xué),2021,42(3):150?157. [YANG Erlin, ZHAO Haoan, XU Yuanyuan, et al. Phenolic compounds and antioxidant activity of jujube honey[J]. Food Science,2021,42(3):150?157.YANG Erlin, ZHAO Haoan, XU Yuanyuan, et al. Phenolic compounds and antioxidant activity of jujube honey[J]. Food Science 2021, 42(3): 150-157.
[9] 王麗麗, 林清霞, 宋振碩, 等. 分光光度法測定茶葉中總黃酮含量[J]. 茶葉學(xué)報(bào),2021,62(1):1?6. [[WANG Lili, LIN Qingxia, SONG Zhenshuo, et al. Spectrophotometric determination of total flavonoids in tea[J]. Acta Tea Sinica,2021,62(1):1?6. doi: 10.3969/j.issn.1007-4872.2021.01.002[WANG Lili, LIN Qingxia, SONG Zhenshuo, et al. Spectrophotometric determination of total flavonoids in tea[J]. Acta Tea Sinica, 2021, 62(1): 1-6. doi: 10.3969/j.issn.1007-4872.2021.01.002
[10] 劉曉燕, 謝丹, 馬立志, 等. 刺梨果渣發(fā)酵前后活性成分及抗氧化能力的比較研究[J]. 食品科技,2021,46(2):16?24. [LIU Xiaoyan, XIE Dan, MA Lizhi, et al. Comparative study on active components and antioxidant capacity of Rosa roxburghii Tratt. fruit residue before and after fermentation[J]. Food Science and Technology,2021,46(2):16?24.LIU Xiaoyan, XIE Dan, MA Lizhi, et al. Comparative study on active components and antioxidant capacity of Rosa roxburghii Tratt. Fruit residue before and after fermentation[J]. Food Science And Technology, 2021, 46(2): 16-24.
[11]BISKUP I, GOLONKA I, GAMIAN A, et al. Antioxidant activity of selected phenols estimated by ABTS and FRAP methods[J]. Postpy Higieny I Medycyny Dowiadczalnej (Advances in Hygiene and Experimental Medicine),2013,67(863688):958?963.
[12] 袁媛, 余修亮, 陳宇歡, 等. 桃金娘花青素和黃酮的提取方法比較及其抗氧化能力研究[J]. 中國食品學(xué)報(bào),2018,18(9):144?151. [YUAN Yuan, YU Xiuliang, CHEN Yuhuan, et al. Comparison of extracting methods for anthocyanins and flavonoids of Rhodomyrtus tomentosa and studies on their antioxidant activity[J]. Chinese Journal of Food Science and Technology,2018,18(9):144?151.YUAN Yuan, YU Xiuliang, CHEN Yuhuan, et al. Comparison of extracting methods for anthocyanins and flavonoids of Rhodomyrtus tomentosa and studies on their antioxidant activity[J]. Chinese Journal of Food Science and Technology, 2018, 18(9): 144-151.
[13] 張?zhí)礻? 陳友霞, 劉珍珍, 等. 不同可食階段蠶豆結(jié)合酚抗氧化活性的研究[J]. 食品工業(yè)科技,2021,42(4):39?43. [ZHANG Tianyang, CHEN Youxia, LIU Zhenzhen, et al. Antioxidant activity of bound phenolics from broad beans at different edible stages[J]. Science and Technology of Food Industry,2021,42(4):39?43.ZHANG Tianyang, CHEN Youxia, LIU Zhenzhen, et al. Antioxidant activity of bound phenolics from broad beans at different edible stages[J]. Science and Technology of Food Industry, 2021, 42(4): 39-43.
[14]OU B, HUANG D, HAMPSCH-WOODILL M, et al. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: A comparative study[J]. Journal of Agricultural and Food Chemistry,2002,50(11):3122?3128. doi: 10.1021/jf0116606
[15] 劉曄, 王遠(yuǎn)興. 基于UPLC-QTOF-MS技術(shù)對廬山云霧茶成分分析及真?zhèn)闻袆e[J]. 中國食品學(xué)報(bào),2020,20(7):269?277. [LIU Ye, WANG Yuanxing. Analysis of Lu Mountain Clouds-Mist Tea’s composition and authenticity discrimination based on UPLC-QTOF-MS[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(7):269?277.LIU Ye, WANG Yuanxing. Analysis of Lu Mountain Clouds-Mist Tea’s composition and authenticity discrimination based on UPLC-QTOF-MS[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(7): 269-277.
[16]WU Z, TENG J, HUANG L, et al. Stability, antioxidant activity and in vitro bile acid-binding of green, black and dark tea polyphenols during simulated in vitro gastrointestinal digestion[J]. RSC Advances,2015,5(112):92089?92095. doi: 10.1039/C5RA18784B
[17]NEILSON A P, HOPF A S, COOPER B R, et al. Catechin degradation with concurrent formation of homo- and heterocatechin dimers during in vitro digestion[J]. Journal of Agricultural and Food Chemistry,2007,55(22):8941?8949. doi: 10.1021/jf071645m
[18]SHIM S, YOO S, RA C, et al. Digestive stability and absorption of green tea polyphenols: Influence of acid and xylitol addition[J]. Food Research International,2012,45(1):204?210. doi: 10.1016/j.foodres.2011.10.016
[19] 蘆琰. 枳橙果實(shí)提取物類黃酮成分鑒定及其抗氧化和預(yù)防肥胖功效研究[D]. 重慶: 西南大學(xué), 2015.LU Yan. Identification of the flavonoid compounds and evaluation of the anti-oxidant and preventing obesity effects of citrange (Citrus sinensis x Poncirus trifoliata) fruits extracts[D]. Chongqing: Southwest University, 2015.
[20]RODRIGUEZ-ROQUE M J, ROJAS-GRAUE M A, ELEZ-MARTINEZ P, et al. Soymilk phenolic compounds, isoflavones and antioxidant activity as affected by in vitro gastrointestinal digestion[J]. Food Chemistry,2013,136(1):206?212. doi: 10.1016/j.foodchem.2012.07.115
[21]CHEN L J, ZHAO X, PLUMMER S, et al. Quantitative determination and structural characterization of isoflavones in nutrition supplements by liquid chromatography-mass spectrometry[J]. Journal of Chromatography A,2005,1082(1):60?70. doi: 10.1016/j.chroma.2005.03.066
[22] 李文婷, 李紅艷, 鄧澤元, 張兵. 基于UPLC-QTOF-MS和HPLC-QQQ-MS技術(shù)的鷹嘴豆酚類化合物定性、定量分析及其抗氧化能力研究[J]. 中國食品學(xué)報(bào),2020,20(4):261?269. [LI Wenting, LI Hongyan, DENG Zeyuan, et al. Qualitative, quantitative analysis of chickpea phenolics based on UPLC-QTOF-MS[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(4):261?269.LI Wenting, LI Hongyan, DENG Zeyuan, et al. Qualitative, quantitative analysis of Chickpea phenolics based on UPLC-QTOF-MS[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(4): 261-269.
[23]SREERAMA Y N, SASHIKALA V B, PRATAPE V M. Variability in the distribution of phenolic compounds in milled fractions of chickpea and horse gram: Evaluation of their antioxidant properties[J]. Journal of Agricultural & Food Chemistry,2010,58(14):8322?8330.
[24]WALSH K R, ZHANG Y C, VODOVOTZ Y, et al. Stability and bioaccessibility of isoflavones from soy bread during in vitro digestion[J]. Journal of Agricultural and Food Chemistry,2003,51(16):4603?4609.
[25]RECORD I R, LANE J M. Simulated intestinal digestion of green and black teas[J]. Food Chemistry,2001,73(4):481?486. doi: 10.1016/S0308-8146(01)00131-5
[26] 徐洪宇, 蒯宜蘊(yùn), 詹壯壯, 等. 果皮中酚類物質(zhì)含量、抗氧化活性及在體外消化過程中成分的變化[J]. 食品科學(xué),2019,40(15):23?30. [XU Hongyu, KUAI Yiyun, ZHAN Zhuangzhuang, et al. Phenolic contents and antioxidant activity of fruit peels and changes in phenolic composition during in vitro simulated digestion[J]. Food Science,2019,40(15):23?30. doi: 10.7506/spkx1002-6630-20180806-046XU Hongyu, KUAI Yiyun, ZHAN Zhuangzhuang, et al. Phenolic contents and antioxidant activity of fruit peels and changes in phenolic composition during in vitro simulated digestion[J]. Food Science, 2019, 40(15): 23-30. doi: 10.7506/spkx1002-6630-20180806-046
[27] 劉國艷, 張潔, 徐鑫, 等. 體外消化對芹菜黃酮混合物和單體的含量及抗氧化應(yīng)激能力的影響[J]. 食品科學(xué),2018,39(18):8?14. [LIU Guoyan, ZHANG Jie, XU Xin, et al. Changes in total and individual flavonoid contents from celery and antioxidative stress ability after in vitro digestion[J]. Food Science,2018,39(18):8?14. doi: 10.7506/spkx1002-6630-201818002LIU Guoyan, ZHANG Jie, XU Xin, et al. Changes in total and individual flavonoid contents from celery and antioxidative stress ability after in vitro digestion[J]. Food Science, 2018, 39(18): 8-14. doi: 10.7506/spkx1002-6630-201818002
[28] 歐紅艷, 趙良忠, 劉汁琪, 等. 豆清飲料配方優(yōu)化及體外模擬消化研究[J]. 食品與發(fā)酵工業(yè),2021,47(23):176?184. [OU Hongyan, ZHAO Liangzhong, LIU Zhiqi, et al. Study on formula optimization and simulation digestion in vitro of soybean whey beverage[J]. Food and Fermentation Industries,2021,47(23):176?184. doi: 10.13995/j.cnki.11-1802/ts.026931OU Hongyan,ZHAO Liangzhong, LIU Zhiqi, et al. Study on formula optimization and simulation digestion in vitro of soybean whey beverage[J]. Food and Fermentation Industries,2021,47(23):176-184. doi: 10.13995/j.cnki.11-1802/ts.026931
[29] 從彥麗, 彭夢雪, 劉冬, 等. 柑橘在體外模擬胃腸消化過程中總多酚、總黃酮及總抗氧化活性的變化規(guī)律[J]. 食品科學(xué),2016,37(17):96?103. [CONG Yanli, PENG Mengxue, LIU Dong, et al. Changes in total polyphenols, total flavonoids and antioxidant activity of citrus during in vitro gastrointestinal digestion process[J]. Food Science,2016,37(17):96?103. doi: 10.7506/spkx1002-6630-201617016CONG Yanli, PENG Mengxue, LIU Dong, et al. Changes in total polyphenols, total flavonoids and antioxidant activity of citrus during in vitro gastrointestinal digestion process[J]. Food Science, 2016, 37(17): 96-103. doi: 10.7506/spkx1002-6630-201617016
[30]RUSAK G, OLA I, BOK V V. Matcha and Sencha green tea extracts with regard to their phenolics pattern and antioxidant and antidiabetic activity during in vitro digestion[J]. Journal of Food Science and Technology,2021,58(9):3568?3578. doi: 10.1007/s13197-021-05086-5
[31] 向卓亞, 鄧俊琳, 陳建, 等. 藜麥體外模擬消化過程中酚類物質(zhì)含量及抗氧化活性的變化[J]. 中國食品學(xué)報(bào),2021,21(8):283?290. [XIANG Zhuoya, DENG Junlin, CHEN Jian, et al. The changes of phenolic contents and antioxidant activity of quinoa during simulated in vitro digestion[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(8):283?290.XIANG Zhuoya, DENG Junlin, CHEN Jian, et al. The changes of phenolic contents and antioxidant activity of quinoa during simulated in vitro digestion[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(8): 283-290.
[32]JAMALI B, BJORNSDOTTIR I, NORDFANG O, et al. Investigation of racemisation of the enantiomers of glitazone drug compounds at different pH using chiral HPLC and chiral CE[J]. Journal of Pharmaceutical & Biomedical Analysis,2008,46(1):82?87.
[33]GLEVITZKY I, DUMITREL G A, GLEVITZKY M, et al. Statistical analysis of the relationship between antioxidant activity and the structure of flavonoid compounds[J]. Revista De Chimie Bucharest Original Edition,2019,70(9):3103?3107.
[34]ARORA A, NAIR M G, STRASBURG G M. Antioxidant activities of isoflavones and their biological metabolites in a liposomal system[J]. Archives of biochemistry and biophysics,1998,356(2):133?141. doi: 10.1006/abbi.1998.0783
相關(guān)知識
橄欖果提取物抗氧化活性及在皮膚健康中的作用
【極養(yǎng)視界】紅、白、綠,哪種茶抗氧化性最強(qiáng)?
抗氧化
脂肪氧化酶對啤酒抗氧化性能的影響及其特性研究
茶多酚(多羥基類化合物)
這么吃真的老得慢!8 種抗氧化食物不僅抗衰老,還能……
綠茶與健康的研究及應(yīng)用
汪麗萍:全谷物中生理活性物質(zhì)的研究進(jìn)展與展望
槲皮素:天然抗氧化劑的9個(gè)好處 – 美豆芽健康飲食養(yǎng)生網(wǎng)
脂肪氧化酶(LOX)活性體外測定方法研究
網(wǎng)址: 綠茶、橘皮、大豆中酚類物質(zhì)體外消化前后穩(wěn)定性及抗氧化活性的研究 http://m.u1s5d6.cn/newsview549620.html
推薦資訊
- 1發(fā)朋友圈對老公徹底失望的心情 12775
- 2BMI體重指數(shù)計(jì)算公式是什么 11235
- 3補(bǔ)腎吃什么 補(bǔ)腎最佳食物推薦 11199
- 4性生活姿勢有哪些 盤點(diǎn)夫妻性 10425
- 5BMI正常值范圍一般是多少? 10137
- 6在線基礎(chǔ)代謝率(BMR)計(jì)算 9652
- 7一邊做飯一邊躁狂怎么辦 9138
- 8從出汗看健康 出汗透露你的健 9063
- 9早上怎么喝水最健康? 8613
- 10五大原因危害女性健康 如何保 7826