Show available content in
Abstract
腸道菌群是指寄居在腸道內(nèi)數(shù)量龐大、種類繁多的微生物群。遺傳、環(huán)境因素(如運動、飲食)和早期生活(如嬰兒期的喂養(yǎng)方式)等均可影響腸道菌群在機體內(nèi)的生態(tài)平衡。腸道生態(tài)失調(diào)與腸外疾病(如帕金森綜合征、骨質(zhì)疏松、自身免疫性疾病等)相關(guān),故腸道菌群的紊亂可能是這些疾病發(fā)病的原因之一。運動對多種疾病有益處,腸道菌群參與神經(jīng)系統(tǒng)、運動系統(tǒng)、免疫系統(tǒng)的調(diào)控。腸道菌群可以通過腸-腦軸、腸-肌軸、免疫等途徑影響機體的健康狀態(tài);中等強度的有氧運動可以增加腸道菌群的數(shù)量,改變菌群豐度,但短期運動對菌群的α多樣性無明顯影響,抗阻運動對于腸道菌群亦無明顯的調(diào)控作用。
Keywords: 腸道菌群, 運動, 代謝產(chǎn)物, 生態(tài)平衡, 生態(tài)失調(diào)
腸道菌群(gut microbiota,GM)是人體最大的微生態(tài)系統(tǒng),腸道內(nèi)定殖了超過1014個細菌,其基因組中的基因數(shù)量約為人類基因組基因總數(shù)的150倍,GM與人體相互依賴,影響多個系統(tǒng)(包括腸神經(jīng)系統(tǒng)、腸內(nèi)分泌系統(tǒng)、免疫系統(tǒng)等),在食物消化、營養(yǎng)素攝入、抵抗外來致病微生物入侵等方面發(fā)揮著重要的作用[1]。GM的組成會受到多種因素的影響,如遺傳、早期生活(如母體感染、分娩方式、嬰兒期喂養(yǎng)方式和抗生素的使用)和環(huán)境因素(如運動、飲食、壓力、童年逆境)等[2]。有趣的是,用餐時間也會影響GM的組成[3];隨著年齡的變化,GM的組成同樣會發(fā)生改變[4]。即使在生活習(xí)慣非常相似的同質(zhì)人群中,GM的組成也表現(xiàn)出高度的異質(zhì)性[5]。當(dāng)前,橫斷面研究[6-7]顯示生態(tài)失調(diào)與腸外疾病(如帕金森綜合征、骨質(zhì)疏松、癡呆、自身免疫性疾病等)相關(guān),但GM的組成與疾病發(fā)病和病程之間的因果關(guān)系仍有待縱向研究來證實。美國腸道項目(American Gut Project)研究[8]表明適度運動可重塑GM的組成和功能,改善老年人的腸道環(huán)境。本文主要從GM對機體的調(diào)控作用入手,闡述運動如何影響GM及其調(diào)控機制。
1. GM對機體的調(diào)控
1.1. GM對神經(jīng)系統(tǒng)的調(diào)控
GM在腸道和大腦之間發(fā)揮調(diào)節(jié)作用。大腦和腸道可以通過中樞神經(jīng)系統(tǒng)(central nervous system,CNS)、腸神經(jīng)系統(tǒng)(enteric nervous system,ENS)、自主神經(jīng)系統(tǒng)(autonomic nervous system,ANS)和下丘腦-垂體-腎上腺(hypothalamic-pituitary-adrenal,HPA)軸進行交流[9]。GM通過胃腸道將攝入的營養(yǎng)物質(zhì)成分(如維生素、礦物質(zhì)、碳水化合物、脂肪)信息傳遞給CNS,進而誘導(dǎo)與飲食和能量狀況相關(guān)的全身反應(yīng)[10]。GM的代謝產(chǎn)物也可影響ENS的功能,如短鏈脂肪酸(short-chain fatty acid,SCFA)、次級膽汁酸(bile acid,BA)、色氨酸代謝物、葉酸和γ-氨基丁酸(γ-aminobutyric acid,GABA)等可影響神經(jīng)遞質(zhì)代謝[11]。SCFA分泌到腸腔,通過上皮屏障,釋放到血液中,到達外周組織和器官;SCFA通過激活G蛋白偶聯(lián)受體(G protein-coupled receptors,GPR)如GPR41和GPR43促進腸道L細胞分泌肽YY(peptide YY,PYY)、胰高血糖素樣肽-1(glucagon like peptide-1,GLP-1)[12]和5-羥色胺(5-hydroxytryptamine,5-HT)[13]的釋放,介導(dǎo)腸-腦軸的交流。GM通過其代謝物可與大腦建立雙向交流,如GM代謝產(chǎn)物可以穿過血腦屏障(blood-brain barrier,BBB),進而影響迷走神經(jīng)或誘導(dǎo)外周免疫。此外,GM還可以通過調(diào)節(jié)腸道內(nèi)分泌細胞[如腸嗜鉻細胞(enterochromaffin cell,ECC)]活性來介導(dǎo)腸-腦軸的交流[14]。腸-腦軸是一個重要的信號通路,當(dāng)它受到干擾時,會導(dǎo)致各種免疫相關(guān)、代謝性和精神疾病[15]。研究[15]表明,與GM正常的無病原體小鼠相比,無菌小鼠表現(xiàn)出更高的BBB通透性,這與負責(zé)調(diào)節(jié)內(nèi)皮組織屏障功能的緊密連接蛋白(tight junction protein,TJP)Occludin和Claudin-5表達減少有關(guān)。
綜上所述,GM參與神經(jīng)系統(tǒng)的調(diào)控,并且影響神經(jīng)遞質(zhì)的合成、釋放,支持了腸-腦軸假說,部分解釋了某些神經(jīng)系統(tǒng)疾病的機制和GM紊亂現(xiàn)象。
1.2. GM對運動系統(tǒng)的調(diào)控
GM的組成與多樣性可能是肌肉代謝與功能的決定因素[16]。在大鼠肌少癥模型中發(fā)現(xiàn),與年齡相關(guān)的骨骼肌質(zhì)量衰退與糞便中某一獨特的微生物群有關(guān),肌少癥大鼠還表現(xiàn)出不同的糞便微生物群功能,涉及營養(yǎng)素生物合成和分解代謝的細菌基因表達重排[17]。GM可以通過某些營養(yǎng)素敏感通路影響肌肉代謝,如哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)或腺苷酸活化蛋白激酶(adenosine 5-monophosphate-activated protein kinase,AMPK)。mTOR和AMPK都是營養(yǎng)素敏感型細胞代謝主調(diào)節(jié)因子,調(diào)節(jié)體內(nèi)多種功能穩(wěn)態(tài),如生酮、肌肉分解/合成代謝和脂肪生成[18]。GM產(chǎn)生的SCFA可以激活肌肉細胞中的AMPK;循環(huán)中的脂多糖(lipopolysaccharides,LPS)可以同時激活肌肉Toll樣受體(Toll-like receptor,TLR)4和TLR5,促進核因子κB(nuclear factor kappa-B,NF-κB)的活化,產(chǎn)生炎癥細胞因子[13]。在動物實驗[19]中,與有GM的無病原體小鼠相比,無菌小鼠由于骨骼肌萎縮而顯示出骨骼肌質(zhì)量減少。16S核糖體核糖核酸(16S ribosomal ribonucleic acid,16S rRNA)測序顯示:與健康對照組相比,肌少癥前期與肌少癥者GM中毛螺菌屬、梭形桿菌屬、羅氏菌屬、真桿菌屬和藍綠藻菌屬的數(shù)量明顯減少,而乳酸桿菌的數(shù)量和LPS的生物合成增加[20]。
綜上所述,GM及其代謝產(chǎn)物可以直接或通過對某些細胞因子的調(diào)控間接影響肌肉的合成與分解代謝。上述研究結(jié)果為腸-肌軸假說提供了證據(jù),部分解釋了肌少癥患者可能的發(fā)病原因——GM紊亂。
1.3. GM對免疫系統(tǒng)的調(diào)控
GM中含有大量的細菌,包括無害的、共生的或潛在的病原體,這意味著GM可能通過與免疫系統(tǒng)的交流,參與調(diào)節(jié)無害和有害細菌之間的微調(diào)平衡[21]。GM參與機體的免疫成熟和抗感染保護,如微生物可以參與免疫系統(tǒng)識別并且區(qū)分有益菌和有害菌;GM可以直接或間接影響樹突狀細胞和巨噬細胞的功能,調(diào)節(jié)T細胞的活性,并通過上皮細胞誘導(dǎo)B細胞成熟[1]。胃腸道(gastrointestinal tract,GIT)除了進行營養(yǎng)素的消化和吸收,還發(fā)揮著腸道屏障的作用,可防止GIT中的不良物質(zhì)(如病原體、膳食抗原和微生物群)進入體內(nèi)。腸道屏障是復(fù)雜的,覆蓋在腸上皮的黏液層在管腔和組織之間形成了物理屏障;腸上皮細胞分泌各種抗菌物質(zhì),如溶菌酶和防御素,形成了化學(xué)屏障,防止微生物群和組織之間的接觸;免疫屏障包括由固有層的漿細胞分泌的免疫球蛋白A(immunoglobulin A,IgA),以及位于固有層和腸道相關(guān)淋巴組織中免疫細胞[22]。GM的代謝產(chǎn)物三甲胺(trimethylamine,TMA)吸收入血后進入肝臟,由肝臟酶——黃素單氧酶3(flavin monooxygenase3,F(xiàn)MO3)氧化,進而生成氧化三甲胺(trimethylamine N-oxide,TMAO)[23]。研究[24]認為TMA對內(nèi)皮有不良影響,可破壞細胞骨架排列,誘發(fā)代謝應(yīng)激,最終損害內(nèi)皮屏障的完整性。健康腸道中的GM在血液中釋放少量的LPS以維持宿主免疫系統(tǒng)的正常運轉(zhuǎn)[25]。在正常情況下,腸道屏障可以防止LPS易位[26]。一些疾病狀態(tài)以腸通透性增加為特征,各種營養(yǎng)因素和外部刺激可以使腸道屏障遭到破壞。更重要的是,大多數(shù)宿主免疫細胞駐留在腸道相關(guān)淋巴組織中,它們可以被激活并導(dǎo)致局部炎癥,循環(huán)中的LPS也可以通過LPS結(jié)合蛋白(LPS binding protein,LBP)/TLR4信號通路激活免疫細胞,進入肝臟、脂肪組織和骨骼肌等,從而導(dǎo)致全身性炎癥[26]。生態(tài)失調(diào)將會導(dǎo)致機體對共生菌的免疫耐受喪失、上皮屏障功能受損以及抗炎Treg淋巴細胞和促炎Th17淋巴細胞激活失衡[6]。體內(nèi)和體外研究表明,特定的腸道細菌(乳酸桿菌和雙歧桿菌)可以增加全身氨基酸的可用性,并在腸道內(nèi)引發(fā)抗炎反應(yīng)[27],且GM可通過刺激上皮細胞的增殖和產(chǎn)生各種抗菌分子來發(fā)揮保護功能,以避免病原體在GIT的定植[21]。此外,擬桿菌門與血漿炎癥標(biāo)志物L(fēng)BP、C-反應(yīng)蛋白(C-reactive protein,CRP)和腫瘤壞死因子-α(tumor necrosis factor-alpha,TNF-α)呈負相關(guān),表明擬桿菌門可能在炎癥調(diào)節(jié)中發(fā)揮作用[28]。
綜上所述,當(dāng)各種因素導(dǎo)致腸道通透性增加時,病原體將會通過腸道屏障進入體內(nèi),導(dǎo)致機體處于炎癥狀態(tài)。健康、平衡的GM可以識別病原體,防止病原體的定植并引起抗炎反應(yīng),保護機體。
2. 運動與GM
當(dāng)前,普遍認為富含纖維的膳食模式有助于GM結(jié)構(gòu)和功能的改變[29],且短期食用完全由動物性或植物性食物構(gòu)成的膳食就會改變微生物群落結(jié)構(gòu),而不受其基因表達的個體差異影響[30]。運動也被認為對腸道健康和免疫力有J型曲線的影響,適量的運動對解決與腸道通透性和炎癥有關(guān)的問題有積極作用,但持續(xù)高強度運動可能會產(chǎn)生有害的影響[18]。
2.1. 高強度運動對GM的影響
Tarracchini等[31]對207個公開獲得的來自運動員和健康非運動員的糞便樣本的鳥槍法宏基因組測序數(shù)據(jù)進行了薈萃分析,結(jié)果表明:與非運動員相比,運動員的GM顯示出更好的抗炎作用,且GM中有益細菌的豐度增加。但是更多的微生物群α多樣性并不總是與腸道健康相關(guān),也可能與潛在有害細菌的生長有關(guān),如馬拉松運動員腸道中潛在致病菌韋榮球菌屬的豐度增加[32],優(yōu)秀耐力運動員經(jīng)常在運動中或運動后出現(xiàn)各種GIT疾病[18]。一項系統(tǒng)綜述[32]發(fā)現(xiàn),運動員比非運動員的GM更多樣化,但產(chǎn)生SCFA和乳酸的細菌豐度相對較低,表明高強度運動對GM的種群有不利影響。一項在長距離鐵人三項運動中進行的研究[33]顯示:超耐力運動后,LPS進入血液循環(huán)。因此,在肌肉損傷的情況下,LPS可能會引起細胞因子反應(yīng)增加,導(dǎo)致運動員的GIT不適。從事長時間高強度體育運動的運動員表現(xiàn)出一種特殊的GM組成,其特征是參與炎癥過程的細菌豐度更高,如嗜血桿菌和羅氏菌屬、黏液菌屬和瘤胃球菌屬[34]。女性長跑運動員腸道細菌代謝產(chǎn)物琥珀酸鹽濃度和糞桿菌屬數(shù)量顯著高于同齡健康女性[35],而琥珀酸鹽的積累似乎可增加腸腔內(nèi)的滲透壓,降低腸道的吸水率,與腸道炎癥相關(guān)。此外,高強度運動刺激血液從腸道再分配到肌肉,而血液的頻繁再分配可能會通過內(nèi)臟低灌注和缺血以及隨后的再灌注潛在地擾亂GM[36]。GM與機體交流途徑的總結(jié)見圖1。
圖1.
腸道菌群與機體交流途徑
Figure 1 Gut microbiota communicates with the body
PYY: Peptide YY; 5-HT: 5-hydroxytryptamine; CNS: Central nervous system; ANS: Autonomic nervous system; ENS: Enteric nervous system; HPA: Hypothalamic-pituitary-adrenal; ECC: Enterochromaffin cell; LPS: Lipopolysaccharides; TLR4: Toll-like receptor 4; TLR5: Toll-like receptor 5; NF-κB: Nuclear factor kappa-B; mTOR: Mammalian target of rapamycin; AMPK: Adenosine 5-monophosphate-activated protein kinase; LBP: LPS binding protein.
總之,長時間的高強度運動不僅會導(dǎo)致腸道通透性增加,從而增加血漿LPS水平,而且還會引起免疫抑制[37]。關(guān)于GM與不同運動項目之間關(guān)系的報道很少,研究[38]顯示:健美運動員體內(nèi)糞桿菌屬、梭狀芽孢桿菌屬和嗜血桿菌屬細菌的比例高于專業(yè)跑步運動員;健美運動員體內(nèi)亦檢出數(shù)量很少的益生菌菌株,如長雙歧桿菌以及產(chǎn)生SCFA的細菌,造成這種菌群豐度差異的原因很可能與飲食有關(guān)。
2.2. 中等強度運動對GM的影響
中等強度運動不會影響GM的多樣性,但會影響其組成,如生成SCFA和乳酸的GM豐度增加,嗜黏蛋白阿克曼菌和顫螺菌屬的相對豐度增加[32]。運動可以增加擬桿菌門的相對豐度,減少厚壁菌門的相對豐度,而且如果從生命早期開始進行運動,可能會產(chǎn)生更大且更持久的益處,但當(dāng)停止運動后,對GM的影響逐漸消失[39]。Allen等[40]招募32名靜坐少動的消瘦(n=18)和肥胖(n=14)女性參加為期6 周的耐力性運動訓(xùn)練(3 d/周),每天30~60 min,運動強度為60%~75%心率儲備(heart rate reserve,HRR),結(jié)果顯示:運動訓(xùn)練可以調(diào)節(jié)機體GM的組成和功能,且該變化獨立于飲食;β多樣性分析顯示運動引起的GM改變與肥胖狀態(tài)有關(guān),即運動增加了消瘦者而不是肥胖者糞便中SCFA的濃度;此外,運動引起的GM變化在運動訓(xùn)練停止6周后在很大程度上被逆轉(zhuǎn)。Resende等[5]招募了24名少動的男性,隨機分為對照組和運動組,運動組每周進行150 min的中等強度[60%~65%峰值攝氧量(peak oxygen uptake,VO2peak)]有氧運動,結(jié)果顯示:10周中等強度有氧運動能夠改善非肥胖年輕男性的VO2peak,且VO2peak和體重指數(shù)(body mass index,BMI)與GM的組成相關(guān)。12周的中等強度快走訓(xùn)練可以增加健康老年婦女體內(nèi)與改善心肺耐力相關(guān)的腸道擬桿菌門相對豐度,而軀干力量訓(xùn)練后腸道擬桿菌門相對豐度并無明顯變化,此外,快走訓(xùn)練增加了糞便中SCFA濃度,略微降低了結(jié)腸腔內(nèi)pH值,有利于擬桿菌類的生存[41]。Quiroga等[42]招募了39名肥胖兒童,旨在確定12周的抗阻和有氧聯(lián)合訓(xùn)練對其GM和炎癥的影響,結(jié)果顯示:與健康兒童對照組相比,肥胖兒童擬桿菌門和變形桿菌門比例更高,厚壁菌門和放線菌門則相反,而運動可以使這種菌群分布模式逐漸趨向于正常。Bycura等[43]在探究不同運動對GM的影響時發(fā)現(xiàn),經(jīng)過8周中高強度的有氧運動和抗阻運動,有氧運動會使GM發(fā)生改變,且這種變化在運動2~3周時最為明顯,但未能持續(xù)到8周;而抗阻運動組并未發(fā)現(xiàn)GM有明顯變化。短期中等運動對GM的改善作用并不會一直存在,僅在最初的2~3周可能有明顯改善作用(僅僅是改變其菌群豐度,而非改變其組成),且在結(jié)束運動6 周后,GM模式又恢復(fù)到原來的狀態(tài),提示可能需要長久的運動來維持健康的GM。此外,有氧運動對于GM的改善優(yōu)于抗阻運動。
2.3. 運動影響GM的機制
有規(guī)律的運動對腸道來說是一種刺激應(yīng)激源,引起有益于機體的反應(yīng),特別是在塑造GM的多樣性和調(diào)節(jié)其分布方面[8]。不規(guī)律的力竭性或長時間訓(xùn)練對GM有負面影響,引起生態(tài)失調(diào),可能會在一定程度上致使運動員免疫反應(yīng)受損并影響健康[13]。
GM與增強GIT屏障密切相關(guān),并參與正常的胃腸蠕動和腸道穩(wěn)態(tài)[13]。運動干預(yù)有助于增強機體胃腸蠕動,促進糞便及時排泄,從而減少腸道黏膜與病原體和有害物質(zhì)的接觸時間,進而影響腸道內(nèi)容物的特性,改變GM組成[1]。在生理和心理應(yīng)激下,HPA軸的激活和隨后分泌的各種激素(促腎上腺皮質(zhì)激素、皮質(zhì)醇、去甲腎上腺素、腎上腺素、多巴胺等)可能在腸道生態(tài)失調(diào)中發(fā)揮作用。運動刺激肌肉細胞產(chǎn)生白細胞介素6(interleukin-6,IL-6),循環(huán)中該細胞因子的水平升高,進而增強骨骼肌局部的葡萄糖攝取和脂肪酸氧化,促進胰島素分泌,從而進一步增加肌肉細胞對葡萄糖的攝取;同時刺激肝臟葡萄糖輸出和脂肪組織中脂肪酸釋放,從而為運動肌肉提供能量底物并發(fā)揮抗炎作用[21, 44]。在動物試驗[45]中,老年小鼠的腸道TJP(如Claudin-1、Occludin)在跑臺運動后表達顯著上調(diào),且循環(huán)LPS水平顯著下降。運動可增加腸道絨毛的厚度、高度和隱窩深度,進而通過緊密連接改善腸道屏障的完整性,減少肥胖對腸道菌群的影響[9]。在靜坐少動的2型糖尿病(type 2 diabetes mellitus,T2DM)患者中,運動會增加細菌多樣性和產(chǎn)生SCFA的菌群,這些變化可減少內(nèi)毒素血癥,促進SCFA和支鏈氨基酸(branched-chain amino acid,BCAA)的降解[12]。沖刺間歇訓(xùn)練(sprint interval training,SIT)與中等強度持續(xù)運動(moderate-intensity continuous training,MICT)均能降低全身和腸道炎癥標(biāo)志物(TNF-α、脂多糖結(jié)合蛋白)的水平,減少內(nèi)毒素血癥,且通過增加擬桿菌門和降低厚壁菌門/擬桿菌門比例來改善GM組成[25]。擬桿菌門可以抑制TLR-4和血管緊張素轉(zhuǎn)換酶2(angiotensin-converting enzyme 2,ACE-2)依賴性信號轉(zhuǎn)導(dǎo),從而增強對促炎細胞因子的抵抗力[46]。嗜黏蛋白阿克曼氏菌(akkermansia muciniphila,Akk)與健康的GM有關(guān),已知其在運動時豐度增加,這種細菌以腸內(nèi)的黏蛋白結(jié)構(gòu)為食,保障上皮屏障的完整性[26, 47]。由運動引起的心血管適應(yīng)性變化可能通過減輕運動期間腸道灌注不足和缺氧來改善腸道屏障的完整性。從免疫的角度來看,長期運動與循環(huán)中促進腸道通透性的炎癥細胞因子(如IL-6和TNF-α)減少有關(guān)。研究[48]表明:通過氧化還原信號轉(zhuǎn)導(dǎo)(包括抗氧化和氧化損傷修復(fù)系統(tǒng)),規(guī)律運動誘導(dǎo)的對活性氧處理的適應(yīng)有助于健康。有氧運動可以增加糞便中SCFA的濃度,從而略微降低結(jié)腸腔內(nèi)的pH值,有助于擬桿菌門的定植生長[41]。腸道神經(jīng)元中轉(zhuǎn)錄因子芳香烴受體(aryl hydrocarbon receptor,AhR)與GM協(xié)同作用,作為腸道環(huán)境和神經(jīng)通訊之間的調(diào)節(jié)節(jié)點,調(diào)節(jié)GM與生理反應(yīng),而且AhR也與運動反應(yīng)相關(guān)聯(lián)[49],運動可能會通過對AhR的調(diào)控影響GM。
綜上所述,運動可通過不同的影響機制(腸-腦軸、腸-肌軸、代謝產(chǎn)物)影響GM,進而調(diào)控機體的健康狀態(tài),其中涉及腸道環(huán)境、腸道屏障、GM組成、氧化應(yīng)激等多途徑。
3. 結(jié) 語
目前的研究表明,GM可以通過腸-腦軸、腸-肌軸、免疫等途徑影響機體的健康狀態(tài)。運動對機體健康的影響可能是通過其對GM的改善來介導(dǎo)的。中等強度的有氧運動可以增加GM的數(shù)量,改變菌群豐度;但短期運動對菌群的α多樣性無明顯影響;抗阻運動對于GM亦無明顯的調(diào)控作用。
運動對于GM的調(diào)控機制包括:1)優(yōu)化GM的組成;2)增加腸道蠕動速度,減少腸道黏膜與病原體的接觸;3)改善腸道環(huán)境,如降低pH值,改善腸道絨毛性狀和調(diào)節(jié)黏膜免疫,上調(diào)TJP,改善胃腸道屏障功能,減少內(nèi)毒素血癥;4)提高機體的抗氧化能力,增強免疫力,改善機體炎癥狀態(tài);5)SCFA濃度及產(chǎn)生SCFA的菌群豐度增加;6)心血管適應(yīng);7)CNS、ENS、ANS、HPA軸的激活反作用于腸道,進而影響GM(圖2)。
圖2.
運動調(diào)控腸道菌群的機制
Figure 2 Mechanisms of exercise regulating gut microbiota
Akk: Akkermansia muciniphila; IL-6: Interleukin-6; VO2 peak: Peak oxygen uptake; LPS: Lipopolysaccharides; SCFA: Short-chain fatty acid; TJP: Tight junction protein.
基金資助
國家重點研發(fā)計劃(2022YFC2010201)。This work was supported by the National Key Research and Development Program of China (2022YFC2010201).
利益沖突聲明
作者聲稱無任何利益沖突。
作者貢獻
高鑫 文獻收集,論文撰寫與修改;張培珍 論文指導(dǎo)與修改。所有作者閱讀并同意最終的文本。
Footnotes
http://dx.chinadoi.cn/10.11817/j.issn.1672-7347.2024.230550
原文網(wǎng)址
http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/202404508.pdf
參考文獻
1. Zhang YW, Cao MM, Li YJ, et al. A narrative review of the moderating effects and repercussion of exercise intervention on osteoporosis: ingenious involvement of gut microbiota and its metabolites[J]. J Transl Med, 2022, 20(1): 490. 10.1186/s12967-022-03700-4. [DOI] [PMC free article] [PubMed] [Google Scholar] 2. Lee JE, Walton D, O’Connor CP, et al. Drugs, guts, brains, but not rock and roll: the need to consider the role of gut microbiota in contemporary mental health and wellness of emerging adults[J]. Int J Mol Sci, 2022, 23(12): 6643. 10.3390/ijms23126643. [DOI] [PMC free article] [PubMed] [Google Scholar] 3. Ramos Meyers G, Samouda H, Bohn T. Short chain fatty acid metabolism in relation to gut microbiota and genetic variability[J]. Nutrients, 2022, 14(24): 5361. 10.3390/nu14245361. [DOI] [PMC free article] [PubMed] [Google Scholar] 4. Strasser B, Wolters M, Weyh C, et al. The effects of lifestyle and diet on gut microbiota composition, inflammation and muscle performance in our aging society[J]. Nutrients, 2021, 13(6): 2045. 10.3390/nu13062045. [DOI] [PMC free article] [PubMed] [Google Scholar] 5. Resende AS, Leite GSF, Lancha Junior AH. Changes in the gut bacteria composition of healthy men with the same nutritional profile undergoing 10-week aerobic exercise training: a randomized controlled trial[J]. Nutrients, 2021, 13(8): 2839. 10.3390/nu13082839. [DOI] [PMC free article] [PubMed] [Google Scholar] 6. Ticinesi A, Lauretani F, Tana C, et al. Exercise and immune system as modulators of intestinal microbiome: implications for the gut-muscle axis hypothesis[J]. Exerc Immunol Rev, 2019, 25: 84-95. [PubMed] [Google Scholar] 7. 趙靜曉, 王萍, 蔣敏敏, 等. 腸道菌群與甲狀腺相關(guān)眼病[J]. 中南大學(xué)學(xué)報(醫(yī)學(xué)版), 2023, 48(11): 1753-1759. 10.11817/j.issn.1672-7347.2023.230187. [DOI] [PMC free article] [PubMed] [Google Scholar]; ZHAO Jingxiao, WANG Ping, JIANG Minmin, et al. Gut microbiota and thyroid-associated ophthalmopathy[J]. Journal of Central South University. Medical Science, 2023, 48(11): 1753-1759. 10.11817/j.issn.1672-7347.2023.230187. [DOI] [PMC free article] [PubMed] [Google Scholar] 8. Zhang L, Liu Y, Sun Y, et al. Combined physical exercise and diet: regulation of gut microbiota to prevent and treat of metabolic disease: a review[J]. Nutrients, 2022, 14(22): 4774. 10.3390/nu14224774. [DOI] [PMC free article] [PubMed] [Google Scholar] 9. Ribeiro FM, Silva MA, Lyssa V, et al. The molecular signaling of exercise and obesity in the microbiota-gut-brain axis[J]. Front Endocrinol, 2022, 13: 927170. 10.3389/fendo.2022.927170. [DOI] [PMC free article] [PubMed] [Google Scholar] 10. Hashim HM, Makpol S. A review of the preclinical and clinical studies on the role of the gut microbiome in aging and neurodegenerative diseases and its modulation[J]. Front Cell Neurosci, 2022, 16: 1007166. 10.3389/fncel.2022.1007166. [DOI] [PMC free article] [PubMed] [Google Scholar] 11. Donati Zeppa S, Ferrini F, Agostini D, et al. Nutraceuticals and physical activity as antidepressants: the central role of the gut microbiota[J]. Antioxidants, 2022, 11(2): 236. 10.3390/antiox11020236. [DOI] [PMC free article] [PubMed] [Google Scholar] 12. Martínez-López YE, Esquivel-Hernández DA, Sánchez-Casta?eda JP, et al. Type 2 diabetes, gut microbiome, and systems biology: a novel perspective for a new era[J]. Gut Microbes, 2022, 14(1): 2111952. 10.1080/19490976.2022.2111952. [DOI] [PMC free article] [PubMed] [Google Scholar] 13. Wegierska AE, Charitos IA, Topi S, et al. The connection between physical exercise and gut microbiota: implications for competitive sports athletes[J]. Sports Med, 2022, 52(10): 2355-2369. 10.1007/s40279-022-01696-x. [DOI] [PMC free article] [PubMed] [Google Scholar] 14. Zhang CX, Xue P, Zhang HY, et al. Gut brain interaction theory reveals gut microbiota mediated neurogenesis and traditional Chinese medicine research strategies[J]. Front Cell Infect Microbiol, 2022, 12: 1072341. 10.3389/fcimb.2022.1072341. [DOI] [PMC free article] [PubMed] [Google Scholar] 15. Rosa JM, Formolo DA, Yu JS, et al. The role of microRNA and microbiota in depression and anxiety[J]. Front Behav Neurosci, 2022, 16: 828258. 10.3389/fnbeh.2022.828258. [DOI] [PMC free article] [PubMed] [Google Scholar] 16. Giron M, Thomas M, Dardevet D, et al. Gut microbes and muscle function: can probiotics make our muscles stronger?[J]. J Cachexia Sarcopenia Muscle, 2022, 13(3): 1460-1476. 10.1002/jcsm.12964. [DOI] [PMC free article] [PubMed] [Google Scholar] 17. Siddharth J, Chakrabarti A, Pannérec A, et al. Aging and sarcopenia associate with specific interactions between gut microbes, serum biomarkers and host physiology in rats[J]. Aging, 2017, 9(7): 1698-1720. 10.18632/aging.101262. [DOI] [PMC free article] [PubMed] [Google Scholar] 18. O’Brien MT, O’Sullivan O, Claesson MJ, et al. The athlete gut microbiome and its relevance to health and performance: a review[J]. Sports Med, 2022, 52(Suppl 1): 119-128. 10.1007/s40279-022-01785-x. [DOI] [PMC free article] [PubMed] [Google Scholar] 19. Lahiri S, Kim H, Garcia-Perez I, et al. The gut microbiota influences skeletal muscle mass and function in mice[J]. Sci Transl Med, 2019, 11(502): eaan5662. 10.1126/scitranslmed.aan5662. [DOI] [PMC free article] [PubMed] [Google Scholar] 20. Kang L, Li PT, Wang DY, et al. Alterations in intestinal microbiota diversity, composition, and function in patients with sarcopenia[J]. Sci Rep, 2021, 11(1): 4628. 10.1038/s41598-021-84031-0. [DOI] [PMC free article] [PubMed] [Google Scholar] 21. Codella R, Luzi L, Terruzzi I. Exercise has the guts: How physical activity may positively modulate gut microbiota in chronic and immune-based diseases[J]. Dig Liver Dis, 2018, 50(4): 331-341. 10.1016/j.dld.2017.11.016. [DOI] [PubMed] [Google Scholar] 22. Riedel S, Pheiffer C, Johnson R, et al. Intestinal barrier function and immune homeostasis are missing links in obesity and type 2 diabetes development[J]. Front Endocrinol, 2021, 12: 833544. 10.3389/fendo.2021.833544. [DOI] [PMC free article] [PubMed] [Google Scholar] 23. Tacconi E, Palma G, de Biase D, et al. Microbiota effect on trimethylamine N-oxide production: from cancer to fitness-a practical preventing recommendation and therapies[J]. Nutrients, 2023, 15(3): 563. 10.3390/nu15030563. [DOI] [PMC free article] [PubMed] [Google Scholar] 24. Hoyles L, Pontifex MG, Rodriguez-Ramiro I, et al. Regulation of blood-brain barrier integrity by microbiome-associated methylamines and cognition by trimethylamine N-oxide[J]. Microbiome, 2021, 9(1): 235. 10.1186/s40168-021-01181-z. [DOI] [PMC free article] [PubMed] [Google Scholar] 25. Motiani KK, Collado MC, Eskelinen JJ, et al. Exercise training modulates gut microbiota profile and improves endotoxemia[J]. Med Sci Sports Exerc, 2020, 52(1): 94-104. 10.1249/MSS.0000000000002112. [DOI] [PMC free article] [PubMed] [Google Scholar] 26. Keirns BH, Koemel NA, Sciarrillo CM, et al. Exercise and intestinal permeability: another form of exercise-induced hormesis?[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 319(4): G512-G518. 10.1152/ajpgi.00232.2020. [DOI] [PubMed] [Google Scholar] 27. Prokopidis K, Chambers E, Lochlainn MN, et al. Mechanisms linking the gut-muscle axis with muscle protein metabolism and anabolic resistance: implications for older adults at risk of sarcopenia[J]. Front Physiol, 2021, 12: 770455. 10.3389/fphys.2021.770455. [DOI] [PMC free article] [PubMed] [Google Scholar] 28. Valder S, Brinkmann C. Exercise for the diabetic gut-potential health effects and underlying mechanisms[J]. Nutrients, 2022, 14(4): 813. 10.3390/nu14040813. [DOI] [PMC free article] [PubMed] [Google Scholar] 29. Hill EB, Chen L, Bailey MT, et al. Facilitating a high-quality dietary pattern induces shared microbial responses linking diet quality, blood pressure, and microbial sterol metabolism in caregiver-child dyads[J]. Gut Microbes, 2022, 14(1): 2150502. 10.1080/19490976.2022.2150502. [DOI] [PMC free article] [PubMed] [Google Scholar] 30. David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome[J]. Nature, 2014, 505(7484): 559-563. 10.1038/nature12820. [DOI] [PMC free article] [PubMed] [Google Scholar] 31. Tarracchini C, Fontana F, Lugli GA, et al. Investigation of the ecological link between recurrent microbial human gut communities and physical activity[J/OL]. Microbiol Spectr, 2022, 10(2): e0042022[2023-11-20]. 10.1128/spectrum.00420-22. [DOI] [PMC free article] [PubMed] [Google Scholar] 32. Dziewiecka H, Buttar HS, Kasperska A, et al. Physical activity induced alterations of gut microbiota in humans: a systematic review[J]. BMC Sports Sci Med Rehabil, 2022, 14(1): 122. 10.1186/s13102-022-00513-2. [DOI] [PMC free article] [PubMed] [Google Scholar] 33. Clauss M, Gérard P, Mosca A, et al. Interplay between exercise and gut microbiome in the context of human health and performance[J]. Front Nutr, 2021, 8: 637010. 10.3389/fnut.2021.637010. [DOI] [PMC free article] [PubMed] [Google Scholar] 34. Cataldi S, Bonavolontà V, Poli, et al. The relationship between physical activity, physical exercise, and human gut microbiota in healthy and unhealthy subjects: a systematic review[J]. Biology, 2022, 11(3): 479. 10.3390/biology11030479. [DOI] [PMC free article] [PubMed] [Google Scholar] 35. Morishima S, Aoi W, Kawamura A, et al. Intensive, prolonged exercise seemingly causes gut dysbiosis in female endurance runners[J]. J Clin Biochem Nutr, 2021, 68(3): 253-258. 10.3164/jcbn.20-131. [DOI] [PMC free article] [PubMed] [Google Scholar] 36. Jang LG, Choi G, Kim SW, et al. The combination of sport and sport-specific diet is associated with characteristics of gut microbiota: an observational study[J]. J Int Soc Sports Nutr, 2019, 16(1): 21. 10.1186/s12970-019-0290-y. [DOI] [PMC free article] [PubMed] [Google Scholar] 37. Clark A, Mach N. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes[J]. J Int Soc Sports Nutr, 2016, 13: 43. 10.1186/s12970-016-0155-6. [DOI] [PMC free article] [PubMed] [Google Scholar] 38. Mańkowska K, Marchelek-My?liwiec M, Kochan P, et al. Microbiota in sports[J]. Arch Microbiol, 2022, 204(8): 485. 10.1007/s00203-022-03111-5. [DOI] [PMC free article] [PubMed] [Google Scholar] 39. Cataldi S, Poli L, ?ahin FN, et al. The effects of physical activity on the gut microbiota and the gut-brain axis in preclinical and human models: a narrative review[J]. Nutrients, 2022, 14(16): 3293. 10.3390/nu14163293. [DOI] [PMC free article] [PubMed] [Google Scholar] 40. Allen JM, Mailing LJ, Niemiro GM, et al. Exercise alters gut microbiota composition and function in lean and obese humans[J]. Med Sci Sports Exerc, 2018, 50(4): 747-757. 10.1249/MSS.0000000000001495. [DOI] [PubMed] [Google Scholar] 41. Morita E, Yokoyama H, Imai D, et al. Aerobic exercise training with brisk walking increases intestinal Bacteroides in healthy elderly women[J]. Nutrients, 2019, 11(4): 868. 10.3390/nu11040868. [DOI] [PMC free article] [PubMed] [Google Scholar] 42. Quiroga R, Nistal E, Estébanez B, et al. Exercise training modulates the gut microbiota profile and impairs inflammatory signaling pathways in obese children[J]. Exp Mol Med, 2020, 52(7): 1048-1061. 10.1038/s12276-020-0459-0. [DOI] [PMC free article] [PubMed] [Google Scholar] 43. Bycura D, Santos AC, Shiffer A, et al. Impact of different exercise modalities on the human gut microbiome[J]. Sports, 2021, 9(2): 14. 10.3390/sports9020014. [DOI] [PMC free article] [PubMed] [Google Scholar] 44. Schnyder S, Handschin C. Skeletal muscle as an endocrine organ: PGC-1α, myokines and exercise[J]. Bone, 2015, 80: 115-125. 10.1016/j.bone.2015.02.008. [DOI] [PMC free article] [PubMed] [Google Scholar] 45. Shin HE, Kwak SE, Zhang DD, et al. Effects of treadmill exercise on the regulation of tight junction proteins in aged mice[J]. Exp Gerontol, 2020, 141: 111077. 10.1016/j.exger.2020.111077. [DOI] [PubMed] [Google Scholar] 46. Babszky G, Torma F, Aczel D, et al. COVID-19 infection alters the microbiome: elite athletes and sedentary patients have similar bacterial flora[J]. Genes, 2021, 12(10): 1577. 10.3390/genes12101577. [DOI] [PMC free article] [PubMed] [Google Scholar] 47. Imdad S, Lim W, Kim JH, et al. Intertwined relationship of mitochondrial metabolism, gut microbiome and exercise potential[J]. Int J Mol Sci, 2022, 23(5): 2679. 10.3390/ijms23052679. [DOI] [PMC free article] [PubMed] [Google Scholar] 48. Radak Z, Ishihara K, Tekus E, et al. Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve[J]. Redox Biol, 2017, 12: 285-290. 10.1016/j.redox.2017.02.015. [DOI] [PMC free article] [PubMed] [Google Scholar] 49. Lensu S, Pekkala S. Gut microbiota, microbial metabolites and human physical performance[J]. Metabolites, 2021, 11(11): 716. 10.3390/metabo11110716. [DOI] [PMC free article] [PubMed] [Google Scholar]