首頁(yè) 資訊 納米羅勒精油/聚乙烯吡咯烷酮

納米羅勒精油/聚乙烯吡咯烷酮

來(lái)源:泰然健康網(wǎng) 時(shí)間:2024年12月27日 16:37

摘要: 羅勒精油(Basil essential oil,BEO)是一種綠色、安全的抑菌劑。然而,BEO的強(qiáng)揮發(fā)性限制了其在抑菌傷口敷料領(lǐng)域的應(yīng)用。本文采用納米沉淀法制備了納米羅勒精油(BEO@Zein(玉米醇溶蛋白)),然后將其負(fù)載在以聚乙烯吡咯烷酮(PVP)和聚乙烯醇(PVA)為基材的水凝膠上,通過(guò)凍融循環(huán)形成了BEO@Zein/PVP-PVA水凝膠傷口敷料,對(duì)BEO@Zein和水凝膠的微觀形貌和結(jié)構(gòu)進(jìn)行表征,對(duì)水凝膠的抑菌性能、力學(xué)性能、溶脹保濕性、降解性、血液相容性進(jìn)行研究。結(jié)果表明:BEO@Zein形成了以BEO為核、Zein為殼的納米球形結(jié)構(gòu)(平均粒徑為56.3 nm),顯著降低了BEO揮發(fā)性。BEO@Zein/PVP-PVA水凝膠可以緩慢釋放BEO,從而表現(xiàn)出優(yōu)異的緩釋抑菌性能。因此,BEO@Zein/PVP-PVA水凝膠具有良好的抑菌持久性(超過(guò)72 h)。此外,水凝膠還表現(xiàn)出顯著的抗細(xì)菌生物膜性能。BEO@Zein/PVP-PVA水凝膠的力學(xué)性能、溶脹保濕性、降解性和血液相容性均表現(xiàn)良好。研究表明:BEO@Zein/PVP-PVA水凝膠是一種良好的傷口敷料材料。

Abstract: Basil essential oil (BEO) is a green and safe antibacterial agent. However, the high volatility of BEO has limited its application in the field of antibacterial wound dressings. BEO nanoparticles (BEO@Zein) were prepared by nanoprecipitation method. They were then loaded on the hydrogel based on polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) to form BEO@Zein/PVP-PVA hydrogel wound dressing by freeze-thaw cycle. The microscopic morphology and structure of BEO@Zein and hydrogel were characterized. The antibacterial property, mechanical property, swelling and moisturizing, degradability and blood compatibility of hydrogel were studied. The results show that BEO@Zein forms a nano-spherical structure with BEO as core and Zein as shell (mean particle size is 56.3 nm), which significantly reduces the volatility of BEO. BEO@Zein/PVP-PVA hydrogel can release BEO slowly, thus exhibiting excellent slow-release antibacterial property. Therefore, BEO@Zein/PVP-PVA hydrogel has excellent antimicrobial persistence (over 72 h). In addition, the hydrogel shows remarkable antibacterial biofilm property. BEO@Zein/PVP-PVA hydrogel has good mechanical property, swelling and moisturizing, degradability, and blood compatibility. Studies have shown that BEO@Zein/PVP-PVA hydrogel can be used as a good wound dressing material.

圖  1   羅勒精油(BEO)@玉米醇溶蛋白(Zein)/聚乙烯吡咯烷酮(PVP)-聚乙烯醇(PVA)水凝膠的制備示意圖

V—Volum

Figure  1.   Schematic diagram of basil essential oil (BEO)@Zein/polyvinylpyrrolidone (PVP)-polyvinyl alcohol (PVA) hydrogel preparation

圖  2   納米Zein和不同質(zhì)量比BEO@Zein納米粒子的平均粒徑

Figure  2.   Average particle size of Zein nanoparticles and BEO@Zein nanoparticles with different mass ratios

圖  3   納米Zein和不同質(zhì)量比的BEO@Zein納米粒子懸浮液對(duì)E. coli和S. aureus的抑菌性

Figure  3.   Bacteriostasis of Zein nanoparticle suspensions and BEO@Zein nanoparticle suspensions with different mass ratios against E. coli and S. aureus

圖  4   納米Zein的TEM (a)和SEM圖像(c);BEO@Zein的TEM (b)和SEM圖像(d);PVA水凝膠(e)、PVP-PVA水凝膠(f)、BEO@Zein/PVP-PVA水凝膠((g), (h))的SEM圖像

Figure  4.   SEM (a) and TEM (c) images of Zein nanoparticles; SEM (b) and TEM (d) images of BEO@Zein nanoparticles; SEM images of PVA hydrogel (e), PVP-PVA hydrogel (f) and BEO@Zein/PVP-PVA hydrogel ((g), (h))

圖  5   水凝膠的FTIR圖譜(a)、XRD圖譜(b) 、DSC曲線(c)和TG曲線(d)

Figure  5.   FTIR spectra (a), XRD patterns (b), DSC curves (c) and TG curves (d) of hydrogel

圖  6   (a) BEO和BEO@Zein在37℃空氣中的揮發(fā)率;(b) BEO@Zein/PVP-PVA水凝膠在磷酸鹽緩沖溶液(PBS)中對(duì)BEO的釋放;(c) BEO (以濾紙為載體)和BEO@Zein/PVP-PVA水凝膠在37℃空氣中揮發(fā)36 h和72 h后對(duì)E. coli的抑菌性;(d) BEO@Zein/PVP-PVA水凝膠在模擬體液中釋放BEO對(duì)E. coli和S. aureus的抑菌性

***—Significant difference (p<0.001, n =3); CFU—Colony forming units

Figure  6.   (a) Volatilization ratio of BEO and BEO@Zein in 37℃ air; (b) BEO release of BEO@Zein/PVP-PVA hydrogel in phosphate buffer saline (PBS); (c) Antibacterial activity of BEO (filter paper as carrier) and BEO@Zein/PVP-PVA hydrogel on E. coli after volatilization in 37℃ air for 36 h and 72 h; (d) Bacteriostasis of BEO@Zein/PVP-PVA hydrogel releasing BEO in simulated body fluids on E. coli and S. aureus

圖  7   PVP-PVA水凝膠和BEO@Zein/PVP-PVA水凝膠對(duì)E. coli (a)和S. aureus (b)持續(xù)抑菌24 h和72 h后的抑菌性;BEO@Zein/PVP-PVA水凝膠抗E. coli生物膜(c)和S. aureus生物膜(d)性能

Figure  7.   Antibacterial activity of PVP-PVA hydrogel and BEO@Zein/PVP-PVA hydrogel against E. coli (a) and S. aureus (b) after 24 h and 72 h of sustained bacteriostasis; BEO@Zein/PVP-PVA hydrogel against E. coli biofilms (c) and S. aureus biofilms (d)

圖  8   BEO@Zein/PVP-PVA水凝膠的緩釋抑菌機(jī)制示意圖

Figure  8.   Schematic diagram of slow-release bacteriostatic mechanism of BEO@Zein/PVP-PVA hydrogel

圖  9   (a) PVA水凝膠、8.5wt%PVA水凝膠、PVP-PVA水凝膠、PVP-8.5wt%PVA水凝膠、BEO@Zein/PVP-PVA水凝膠的應(yīng)力-應(yīng)變曲線;(b) PVA水凝膠、PVP-PVA水凝膠、BEO@Zein/PVP-PVA水凝膠在PBS溶液中的溶脹率曲線;(c) BEO@Zein/PVP-PVA水凝膠在37℃和25℃下的失水率曲線;(d) PVP-PVA水凝膠和BEO@Zein/PVP-PVA水凝膠在土壤和PBS溶液中的降解率曲線

Figure  9.   (a) Stress-strain curves of PVA hydrogel, 8.5wt%PVA hydrogel, PVP-PVA hydrogel, PVP-8.5wt%PVA hydrogel, and BEO@Zein/PVP-PVA hydrogel; (b) Swelling ratio curves of PVA hydrogel, PVP-PVA hydrogel, and BEO@Zein/PVP-PVA hydrogel in PBS solution; (c) Water loss ratio curves of BEO@Zein/PVP-PVA hydrogel at 37℃ and 25℃; (d) Degradation ratio curves of PVP-PVA hydrogel and BEO@Zein/PVP-PVA hydrogel in soil and PBS solution

圖  10   水、PBS和BEO@Zein/PVP-PVA水凝膠處理的紅細(xì)胞的溶血率(a)和圖像(b);PBS (c)和BEO@Zein/PVP-PVA水凝膠(d)處理的紅細(xì)胞的光學(xué)圖像

*—Significant difference (** p<0.01, *** p<0.001, n = 3)

Figure  10.   Hemolysis ratio (a) and pictures (b) of red blood cells treated with water, PBS and BEO@Zein/PVP-PVA hydrogel; Optical images of red blood cells treated with PBS (c) and BEO@Zein/PVP-PVA hydrogel (d)

[1]

XIONG S, LI R, YE S, et al. Vanillin enhances the antibacterial and antioxidant properties of polyvinyl alcohol-chitosan hydrogel dressings[J]. International Journal of Biological Macromolecules,2022,220:109-116. DOI: 10.1016/j.ijbiomac.2022.08.052

[2]

ZHANG Y, JIANG M, ZHANG Y, et al. Novel lignin-chitosan-PVA composite hydrogel for wound dressing[J]. Materials Science and Engineering: C,2019,104:110002. DOI: 10.1016/j.msec.2019.110002

[3]

TAO G, WANG Y, CAI R, et al. Design and performance of sericin/poly(vinyl alcohol) hydrogel as a drug delivery carrier for potential wound dressing application[J]. Materials Science and Engineering: C,2019,101:341-351.

[4]

BAKADIA B M, ZHONG A, LI X, et al. Biodegradable and injectable poly(vinyl alcohol) microspheres in silk sericin-based hydrogel for the controlled release of antimicrobials: Application to deep full-thickness burn wound healing[J]. Advanced Composites and Hybrid Materials,2022,5(4):2847-2872. DOI: 10.1007/s42114-022-00467-6

[5]

KALANTARI K, MOSTAFAVI E, SALEH B, et al. Chitosan/PVA hydrogels incorporated with green synthesized cerium oxide nanoparticles for wound healing applications[J]. European Polymer Journal,2020,134:109853. DOI: 10.1016/j.eurpolymj.2020.109853

[6]

SONG S, LIU Z, ABUBAKER M A, et al. Antibacterial polyvinyl alcohol/bacterial cellulose/nano-silver hydrogels that effectively promote wound healing[J]. Materials Science and Engineering: C,2021,126:112171.

[7]

WANG Z, WANG Y, PENG X, et al. Photocatalytic antibacterial agent incorporated double-network hydrogel for wound healing[J]. Colloids and Surfaces B: Biointerfaces,2019,180:237-244. DOI: 10.1016/j.colsurfb.2019.04.043

[8]

DEDE S, SADAK O, DIDIN M, et al. Basil oil-loaded electrospun biofibers: Edible food packaging material[J]. Journal of Food Engineering,2022,319:110914. DOI: 10.1016/j.jfoodeng.2021.110914

[9]

SUN R, SONG G S, ZHANG H, et al. Effect of basil essential oil and beeswax incorporation on the physical, structural, and antibacterial properties of chitosan emulsion based coating for eggs preservation[J]. LWT,2021,150:112020. DOI: 10.1016/j.lwt.2021.112020

[10]

MARQUES C S, CARVALHO S G, BERTOLI L D, et al. beta-cyclodextrin inclusion complexes with essential oils: Obtention, characterization, antimicrobial activity and potential application for food preservative sachets[J]. Food Research International,2019,119:499-509. DOI: 10.1016/j.foodres.2019.01.016

[11]

LI C Z, BAI M, CHEN X C, et al. Controlled release and antibacterial activity of nanofibers loaded with basil essential oil-encapsulated cationic liposomes against Listeria monocytogenes[J]. Food Bioscience,2022,46:101578. DOI: 10.1016/j.fbio.2022.101578

[12]

WEISANY W, YOUSEFI S, TAHIR N A, et al. Targeted delivery and controlled released of essential oils using nanoencapsulation: A review[J]. Advances in Colloid and Interface Science,2022,303:102655. DOI: 10.1016/j.cis.2022.102655

[13]

LAMMARI N, LOUAER O, MENIAI A H, et al. Encapsulation of essential oils via nanoprecipitation process: Overview, progress, challenges and prospects[J]. Pharmaceutics,2020,12(5):431. DOI: 10.3390/pharmaceutics12050431

[14]

GHORBANI M, HASSANI N, RAEISI M. Development of gelatin thin film reinforced by modified gellan gum and naringenin-loaded Zein nanoparticle as a wound dressing[J]. Macromolecular Research,2022,30(6):397-405. DOI: 10.1007/s13233-022-0049-1

[15]

SANKARGANESH P, PARTHASARATHY V, KUMAR A G, et al. Preparation of cellulose-PVA blended hydrogels for wound healing applications with controlled release of the antibacterial drug: An in vitro anticancer activity[J]. Biomass Conversion and Biorefinery, 2022, 4: 1-11.

[16]

YU Y, YANG Z, REN S, et al. Multifunctional hydrogel based on ionic liquid with antibacterial performance[J]. Journal of Molecular Liquids,2020,299:112185. DOI: 10.1016/j.molliq.2019.112185

[17]

QING X, HE G, LIU Z, et al. Preparation and properties of polyvinyl alcohol/N-succinyl chitosan/lincomycin composite antibacterial hydrogels for wound dressing[J]. Carbohydrate Polymers,2021,261:117875. DOI: 10.1016/j.carbpol.2021.117875

[18]

YU H, KIM J S, KIM D W, et al. Novel composite double-layered dressing with improved mechanical properties and wound recovery for thermosensitive drug, lactobacillus brevis[J]. Composites Part B: Engineering,2021,225:109276. DOI: 10.1016/j.compositesb.2021.109276

[19]

GUO Y Q, AN X L, FAN Z J. Aramid nanofibers reinforced polyvinyl alcohol/tannic acid hydrogel with improved mechanical and antibacterial properties for potential application as wound dressing[J]. Journal of the Mechanical Behavior of Biomedical Materials,2021,118:104452. DOI: 10.1016/j.jmbbm.2021.104452

[20]

THONGSUKSAENGCHAROEN S, SAMOSORN S, SONGSRIROTE K. A facile synthesis of self-catalytic hydrogel films and their application as a wound dressing material coupled with natural active compounds[J]. ACS Omega,2020,5(40):25973-25983. DOI: 10.1021/acsomega.0c03414

[21]

GHEORGHITA D, GROSU E, ROBU A, et al. Essential oils as antimicrobial active substances in wound dressings[J]. Materials,2022,15(19):6923. DOI: 10.3390/ma15196923

[22]

TEODORESCU M, BERCEA M, MORARIU S. Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges[J]. Biotechnology Advances,2019,37(1):109-131. DOI: 10.1016/j.biotechadv.2018.11.008

[23]

ZHANG H, TANG N, YU X, et al. Natural glycyrrhizic acid-tailored hydrogel with in-situ gradient reduction of AgNPs layer as high-performance, multi-functional, sustainable flexible sensors[J]. Chemical Engineering Journal,2022,430:132779. DOI: 10.1016/j.cej.2021.132779

[24]

HE Q, ZHANG L G, SONG L Y, et al. Inactivation of Staphylococcus aureus using ultrasound in combination with thyme essential oil nanoemulsions and its synergistic mechanism[J]. LWT,2021,147:111574. DOI: 10.1016/j.lwt.2021.111574

[25]

SHAREEF S N, MADHURI W. Structural, morphological, dielectric and tensile properties of BaTiO3-doped PVA/PVP polymer blend nanocomposites[J]. Polymer Bulletin,2022,80(3):2389-2412.

[26]

EL-KADER M F H A, ELABBASY M T, ADEBOYE A A, et al. Nanocomposite of PVA/PVP blend incorporated by copper oxide nanoparticles via nanosecond laser ablation for antibacterial activity enhancement[J]. Polymer Bulletin,2021,79(11):9779-9795.

目的

羅勒精油(Basil essential oil,BEO)是一種綠色、安全的抑菌劑。然而,BEO的強(qiáng)揮發(fā)性導(dǎo)致它不能在較長(zhǎng)時(shí)間內(nèi)維持抑菌活性,從而限制了其在抑菌傷口敷料領(lǐng)域的應(yīng)用。本文采用納米沉淀法在乙醇水溶液中使用兩親性玉米醇溶蛋白(Zein)制備了納米羅勒精油(BEO@Zein),然后將其負(fù)載在以聚乙烯吡咯烷酮(PVP)和聚乙烯醇(PVA)為基材的水凝膠上,通過(guò)凍融循環(huán)形成了BEO@Zein/PVP-PVA水凝膠傷口敷料,并對(duì)BEO@Zein和BEO@Zein/PVP-PVA水凝膠進(jìn)行表征分析和性能研究。

方法

首先通過(guò)掃描電鏡(SEM)、透射電鏡(TEM)、紅外(FTIR)、差式掃描量熱法(DSC)、熱重(TG)和X射線衍射(XRD)對(duì)BEO@Zein和BEO@Zein/PVP-PVA水凝膠進(jìn)行表征分析。然后以大腸桿菌()和金黃色葡萄球菌()為典型,通過(guò)抑菌圈和平板計(jì)數(shù)法探究BEO@Zein/PVP-PVA水凝膠對(duì)BEO的釋放對(duì)其抑菌性能的影響。使用萬(wàn)能試驗(yàn)機(jī)進(jìn)行拉伸實(shí)驗(yàn)探究BEO@Zein/PVP-PVA水凝膠的力學(xué)性能。根據(jù)質(zhì)量變化探究BEO@Zein/PVP-PVA水凝膠的溶脹保濕性以及在土壤和PBS溶液中的降解性。用BEO@Zein/PVP-PVA水凝膠處理紅細(xì)胞,根據(jù)溶血率和細(xì)胞形態(tài)來(lái)評(píng)價(jià)其血液相容性。

結(jié)果

SEM和TEM表明,BEO@Zein形成了以BEO為核、Zein為殼的納米結(jié)構(gòu),其形貌為規(guī)則的球形,當(dāng)BEO和Zein的質(zhì)量比為5:1時(shí),平均粒徑相對(duì)較小(56.3nm)。抑菌實(shí)驗(yàn)表明,隨著B(niǎo)EO的比例增大,BEO@Zein的抑菌性能也有所提高。SEM還表明,BEO@Zein/PVP-PVA水凝膠具有多孔結(jié)構(gòu),其表面分布了少量BEO@Zein。FTIR證明了BEO@Zein/PVP-PVA水凝膠的組成以及氫鍵的存在。XRD表明,BEO@Zein/PVP-PVA水凝膠中形成了PVA結(jié)晶的網(wǎng)絡(luò)結(jié)構(gòu),且PVA含量越高,PVA結(jié)晶性越好,水凝膠交聯(lián)度就越高。DSC和TG表明,BEO@Zein的核殼結(jié)構(gòu)和BEO@Zein/PVP-PVA水凝膠網(wǎng)絡(luò)都有利于提高BEO的熱穩(wěn)定性。在揮發(fā)性實(shí)驗(yàn)中,12h后BEO的揮發(fā)率為83%,BEO@Zein的揮發(fā)率僅為2%;在模擬體液中,BEO@Zein/PVP-PVA水凝膠中的BEO前10h內(nèi)呈現(xiàn)近乎線性的釋放規(guī)律,釋放率最高達(dá)到44%,與沒(méi)有氫鍵作用的BEO相比,該水凝膠體現(xiàn)出對(duì)BEO緩慢釋放的特性,也因此使得水凝膠具有了持續(xù)抑菌的性能。抑菌實(shí)驗(yàn)表明,BEO在揮發(fā)36h后失去抑菌性,但同一時(shí)間下BEO@Zein/PVP-PVA水凝膠仍具有抑菌性,且揮發(fā)72h后還有明顯的抑菌圈;在模擬體液中BEO@Zein/PVP-PVA水凝膠0.5h后對(duì)和的抑制率分別為97.59%和25.12%,1h后抑制率均為100%,證明水凝膠具有緩釋抑菌性能,且抑菌實(shí)驗(yàn)表明持續(xù)抑菌時(shí)間超過(guò)72h。BEO@Zein/PVP-PVA水凝膠還可以抑制和形成的生物膜,對(duì)生物膜的抑制率可以幾近達(dá)到100%。此外,BEO@Zein/PVP-PVA水凝膠對(duì)的抑菌效果比好,這可能是因?yàn)锽EO中丁香酚等疏水化合物能與細(xì)胞膜直接相互作用,而親水細(xì)胞膜會(huì)阻礙疏水化合物的滲透,因此對(duì)BEO的抵抗力更強(qiáng)。拉伸應(yīng)力應(yīng)變曲線表明,在PVA水凝膠中引入PVP可以改善其力學(xué)性能,且水凝膠中PVA含量越高,PVA結(jié)晶性越好,力學(xué)性能越強(qiáng),BEO@Zein/PVP-PVA水凝膠的拉伸強(qiáng)度和斷裂伸長(zhǎng)率分別為0.33MPa和402.52%。溶脹率曲線表明,PVA水凝膠、PVP-PVA水凝膠和BEO@Zein/PVP-PVA水凝膠對(duì)PBS溶液的吸收在8h后基本飽和,溶脹率分別達(dá)到229%、285%和332%以上。失水率曲線表明,BEO@Zein/PVP-PVA水凝膠在25℃和37℃下8h內(nèi)的失水率分別達(dá)到40%和85%以上。在相同時(shí)間內(nèi),BEO@Zein/PVP-PVA水凝膠的溶脹率要遠(yuǎn)高于失水率,因此該水凝膠可以通過(guò)吸收傷口滲出液維持傷口環(huán)境濕潤(rùn),從而具有溶脹保濕性。降解率曲線表明,PVP-PVA水凝膠和BEO@Zein/PVP-PVA水凝膠的降解率在10天后分別為20%和50%,這是因?yàn)锽EO@Zein/PVP-PVA水凝膠的PVA含量低于PVP-PVA水凝膠,水凝膠中PVA含量越低,PVA結(jié)晶性越差,水凝膠交聯(lián)度越小,所以降解性越好。BEO@Zein/PVP-PVA水凝膠處理的紅細(xì)胞的溶血率基本為0,光學(xué)圖像也顯示,細(xì)胞形態(tài)沒(méi)有發(fā)生明顯轉(zhuǎn)變,表明該水凝膠具有血液相容性。

結(jié)論

BEO@Zein能提高BEO的熱穩(wěn)定性,并降低其揮發(fā)性。BEO@Zein/PVP-PVA水凝膠傷口敷料可以緩慢釋放BEO,從而表新出緩釋抑菌性能。此外,水凝膠還表現(xiàn)出顯著的抗細(xì)菌生物膜性能,對(duì)生物膜的抑制率幾近達(dá)到100%。BEO@Zein/PVP-PVA水凝膠以PVA結(jié)晶和氫鍵交聯(lián),具有較好的力學(xué)性能,同時(shí)多孔結(jié)構(gòu)使其具有較強(qiáng)的溶脹保濕性,此外在土壤和PBS中具有降解性。BEO@Zein/PVP-PVA水凝膠傷口敷料處理過(guò)的紅細(xì)胞的溶血率基本為0,細(xì)胞也沒(méi)有發(fā)生形態(tài)學(xué)轉(zhuǎn)變,具有血液相容性。總之,BEO@Zein/PVP-PVA水凝膠是一種有潛力的傷口敷料材料。

相關(guān)知識(shí)

羅勒精油提取(羅勒精油萃取方式)
甜羅勒精油 羅勒油|8015
甜羅勒精油
三氯乙烯 CAS#: 79
羅勒精油的世界探秘
羅勒精油(羅勒精油——功效全面的)
羅勒精油( Basil)
羅勒精油的功效與作用及禁忌(羅勒精油的化學(xué)成分)
常用精油:羅勒
羅勒精油成分鑒定及抑菌活性測(cè)定

網(wǎng)址: 納米羅勒精油/聚乙烯吡咯烷酮 http://m.u1s5d6.cn/newsview853624.html

推薦資訊