首頁 資訊 ICU病人生理參數(shù)監(jiān)測技術(shù)的研究進展

ICU病人生理參數(shù)監(jiān)測技術(shù)的研究進展

來源:泰然健康網(wǎng) 時間:2024年11月25日 08:38

摘要: 生理參數(shù)監(jiān)測是指導(dǎo)臨床醫(yī)護人員定量評估、診斷和治療重癥患者的必要手段。心電、血壓、血氧、呼吸和體溫等是ICU病人最基本的生命體征,目前監(jiān)測方法相對成熟,未來主要發(fā)展方向是精準(zhǔn)化、舒適化和無線化。血流動力學(xué)、氧代謝和微循環(huán)等指標(biāo)是急危重病人救治過程中需要深入關(guān)注的內(nèi)容,相關(guān)監(jiān)測技術(shù)在近年來取得了顯著進步,未來發(fā)展趨勢是減少創(chuàng)傷以及提高準(zhǔn)確度和易用性。隨著機器視覺和數(shù)據(jù)融合技術(shù)的應(yīng)用,病人行為和病情惡化等狀態(tài)的自動識別問題逐漸成為國際前沿?zé)狳c。該研究聚焦物理測量,針對ICU中的主要病癥對象,分析和總結(jié)參數(shù)監(jiān)測技術(shù)的研究現(xiàn)狀,旨在為日后重癥監(jiān)測的相關(guān)研究提供參考。

Abstract: Physiological parameters monitoring is essential to direct medical staff to evaluate, diagnose and treat critical patients quantitatively. ECG, blood pressure, SpO2, respiratory rate and body temperature are the basic vital signs of patients in the ICU. The measuring methods are relatively mature at present, and the trend is to be wireless and more accurate and comfortable. Hemodynamics, oxygen metabolism and microcirculation should be taken seriously during the treatment of acute critical patients. The related monitoring technology has made significant progress in recent years, the trend is to reduce the trauma and improve the accuracy and usability. With the development of machine vision and data fusion technology, the identification of patient behavior and deterioration has become hot topics. This review is focused on current parameters monitoring technologies, aims to provide reference for future related research.

[1] 劉大為. 實用重癥醫(yī)學(xué)[M]. 2版. 北京: 人民衛(wèi)生出版社, 2017. [2]

EDE J, VOLLAM S, DARBYSHIRE J L, et al. Non-contact vital sign monitoring of patients in an intensive care unit: A human factors analysis of staff expectations[J]. Appl Ergon, 2021, 90: 103149.

[3] 管向東. 融合與創(chuàng)新: 重癥醫(yī)學(xué)發(fā)展的靈魂[J]. 中華重癥醫(yī)學(xué)電子雜志(網(wǎng)絡(luò)版), 2019, 5(2): 89-92. [4]

ANGUS D C, VAN DER POLL T. Severe sepsis and septic shock[J]. N Engl J Med, 2013, 369(21): 2063.

[5] 中華醫(yī)學(xué)會心血管病學(xué)分會心血管急重癥學(xué)組. 心原性休克診斷和治療中國專家共識(2018)[J]. 中華心血管病雜志, 2019, 47(4): 265-277. [6] 劉良明, 白祥軍, 李濤, 等. 創(chuàng)傷失血性休克早期救治規(guī)范[J]. 創(chuàng)傷外科雜志, 2017, 19(12): 881-883. [7]

THOMPSON B T, CHAMBERS R C, KATHLEEN D L. Acute respiratory distress syndrome [J]. New Engl J Med, 2017, 377(6): 562-572.

[8] 邊素艷, 曹豐, 程慶礫, 等. 感染誘發(fā)的老年多器官功能障礙綜合征診治中國專家共識[J]. 中國實用內(nèi)科雜志, 2018, 38(8): 727-738. [9]

ZAMAN S U, TAO X Y, COCHRANE C, et al. Understanding the washing damage to textile ECG dry skin electrodes, embroidered and fabric-based; set up of equivalent laboratory tests[J]. Sensors (Basel), 2020, 20(5): E1272.

[10]

MAJUMDER S, CHEN L, MARINOV O, et al. Noncontact wearable wireless ECG systems for long-term monitoring[J]. IEEE Rev Biomed Eng, 2018, 11: 306-321.

[11]

ATTIA Z I, NOSEWORTHY P A, LOPEZ-JIMENEZ F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: A retrospective analysis of outcome prediction[J]. Lancet, 2019, 394(10201): 861-867.

[12]

LUCAS A, LIN Y W, DONG S H, et al. Applications of machine learning algorithms in predicting coronary artery disease and myocardial infarction[Z].

[13]

SU J W, DAI J, GUAN Z H, et al. A four-lead real time arrhythmia analysis algorithm[C]. 2017 Computing in Cardiology Conference (CinC). Computing in Cardiology, 2017(44):1-4.

[14]

SU J W, LIU S C, SUN Z H, et al. Real-time fusion of ECG and SpO2 signals to reduce false alarms[C]. 2018 Computing in Cardiology Conference (CinC). Computing in Cardiology, 2018(45): 1-4.

[15]

HUYNH T H, JAFARI R, CHUNG W Y. Noninvasive cuffless blood pressure estimation using pulse transit time and impedance plethysmography[J]. IEEE Trans Biomed Eng, 2019, 66(4): 967-976.

[16] 韓鋒, 張靜靜, 駱艷妮, 等. 102例危重病患者有創(chuàng)血壓和無創(chuàng)血壓的對比[J]. 中華重癥醫(yī)學(xué)電子雜志(網(wǎng)絡(luò)版), 2019, 5(1): 15-19. [17] 童禹浩, 葉艷, 曾敏, 等. ICU危重患者無創(chuàng)脈搏血氧飽和度監(jiān)測臨床應(yīng)用現(xiàn)狀[J]. 現(xiàn)代臨床醫(yī)學(xué), 2019, 45(5): 382-384. [18]

WANG G M, ZHANG S M, DONG S R, et al. Stretchable optical sensing patch system integrated heart rate, pulse oxygen saturation, and sweat pH detection[J]. IEEE Trans Biomed Eng, 2019, 66(4): 1000-1005.

[19]

ALHARBI S, HU S, MULVANEY D, et al. Oxygen saturation measurements from green and orange illuminations of multi-wavelength optoelectronic patch sensors[J]. Sensors (Basel), 2018, 19(1): E118.

[20]

XU K, JIANG X Y, CHEN W. Photoplethysmography motion artifacts removal based on signal-noise interaction modeling utilizing envelope filtering and time-delay neural network[J]. IEEE Sens J, 2020, 20(7): 3732-3744.

[21]

XIE F, LIANG K K, WU W M, et al. Research on characteristics of morphological filters[J]. J Phys: Conf Ser, 2019, 1176: 042037.

[22]

ALHARBI S, HU S, MULVANEY D, et al. An applicable approach for extracting human heart rate and oxygen saturation during physical movements using a multi-wavelength illumination optoelectronic sensor system[C].SPIE BiOS. Proc SPIE 10486, Design and Quality for Biomedical Technologies XI, San Francisco, California, USA. 2018, 1048: 104860S.

[23]

BAO X, HOWARD M, NIAZI I K, et al. Comparison between embroidered and gel electrodes on ECG-derived respiration rate[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2020, 2020: 2622-2625.

[24]

RASHEED A, IRANMANESH E, LI W W, et al. An active self-driven piezoelectric sensor enabling real-time respiration monitoring[J]. Sensors (Basel), 2019, 19(14): E3241.

[25]

KIM D H, LEE E, KIM J, et al. A sleep apnea monitoring IC for respiration, heart-rate, SpO2 and pulse-transit time measurement using thermistor, PPG and body-channel communication[J]. IEEE Sens J, 2020, 20(4): 1997-2007.

[26]

KARACOCUK G, H FLINGER F, ZHANG R, et al. Inertial sensor-based respiration analysis[J]. IEEE Trans Instrum Meas, 2019, 68(11): 4268-4275.

[27]

STREKALOV D V, THOMPSON R J, BAUMGARTEL L M, et al. Temperature measurement [J]. Biomed Tech, 2011, 56:241-257.

[28]

NONOSE Y, SATO Y, KABAYAMA H, et al. Accuracy of recorded body temperature of critically ill patients related to measurement site: A prospective observational study[J]. Anaesth Intensive Care, 2012, 40(5): 820-824.

[29]

ANEKWE D E, MILNER S C, BUSSI RES A, et al. Intensive care unit clinicians identify many barriers to, and facilitators of, early mobilisation: A qualitative study using the Theoretical Domains Framework[J]. J Physiother, 2020, 66(2): 120-127.

[30] 謝志毅, 張振宇, 朱研, 等. 前臂平衡壓預(yù)測容量負(fù)荷試驗對重癥少尿患者增加尿量的研究初探[J]. 中華內(nèi)科雜志, 2018, 57(6): 418-422. [31] 謝志毅, 王仲, 許媛, 等. 不同阻斷血流時間對前臂平衡壓的影響及與全身血流動力學(xué)指標(biāo)的相關(guān)性[J]. 中華內(nèi)科雜志, 2017, 56(5): 349-352. [32]

MAAS J J, PINSKY M R, GEERTS B F, et al. Estimation of mean systemic filling pressure in postoperative cardiac surgery patients with three methods[J]. Intensive Care Med, 2012, 38(9): 1452-1460.

[33] 陳德昌. 血流動力學(xué)與肺動脈漂浮導(dǎo)管——不學(xué)病理生理學(xué)不能取得根本性的進展[J]. 中華危重病急救醫(yī)學(xué). 2012, 24(8): 449-450. [34] 張家平, 王唯依. 脈搏輪廓心排血量監(jiān)測技術(shù)在嚴(yán)重?zé)齻委熤袘?yīng)用的全國專家共識(2018版)[J]. 中華損傷與修復(fù)雜志(電子版), 2018, 13(6): 416-420. [35] 沈浩, 王龍, 張宏. 連續(xù)血流動力學(xué)監(jiān)測LiDCO系統(tǒng)的臨床研究進展[J]. 北京醫(yī)學(xué), 2019, 41(8): 723-725. [36]

KAUFMANN T, CLEMENT R P, HIEMSTRA B, et al. Disagreement in cardiac output measurements between fourth-generation FloTrac and critical care ultrasonography in patients with circulatory shock: A prospective observational study[J]. J Intensive Care, 2019, 7: 21.

[37] 劉大為. 臨床血流動力學(xué)30年[J]. 協(xié)和醫(yī)學(xué)雜志, 2019, 10(5): 433-437. [38] 劉大為. 臨床血流動力學(xué)[M]. 北京: 人民衛(wèi)生出版社, 2013. [39]

ABUT Y C. Monitoring tissue perfusion in shock: From physiology to the bedside[J]. Anesth Analg, 2019, 128(6): 1.

[40] 胡帥, 韓志巖, 王曉建, 等. 中心靜脈氧飽和度替代混合靜脈氧飽和度對先天性心臟病合并肺動脈高壓術(shù)后的監(jiān)護價值: 多中心前瞻性研究[J]. 協(xié)和醫(yī)學(xué)雜志, 2018, 9(3): 228-233. [41]

HERNER A, HALLER B, MAYR U, et al. Accuracy and precision of ScvO2 measured with the CeVOX-device: A prospective study in patients with a wide variation of ScvO2-values[J]. PLoS One, 2018, 13(4): e0192073.

[42]

BERG A N, CONZEMIUS M G, EVANS R B, et al. Evaluation of tissue oxygen saturation in naturally occurring canine shock patients[J]. J Vet Emerg Crit Care (San Antonio), 2019, 29(2): 149-153.

[43] 邵勁松, 周立新, 譽鐵鷗. 氣道壓力釋放通氣模式對嚴(yán)重創(chuàng)傷患者胃黏膜pH的影響[J]. 國際呼吸雜志, 2019, 39(15): 1157-1162. [44]

PALAGYI P, KASZAKI J, MOLNAR Z. Monitoring microcirculatory blood flow with a new sublingual tonometer in a porcine model of haemorrhagic shock[J]. Crit Care, 2013, 17(suppl 2): P210.

[45]

KIM J Y, YOON Y H, LEE S W, et al. Accuracy of transcutaneous carbon dioxide monitoring in hypotensive patients[J]. Emerg Med J, 2014, 31(4): 323-326.

[46]

NEUSCHWANDER A, COUFFIN S, HUYNH T M, et al. Determinants of transcutaneous ear lobe CO2 tension (PtCO2) at 37℃ during on-pump cardiac surgery[J]. J Cardiothorac Vasc Anesth, 2015, 29(4): 917-923.

[47]

HE H W, LIU D W, LONG Y, et al. The transcutaneous oxygen challenge test: A noninvasive method for detecting low cardiac output in septic patients[J]. Shock, 2012, 37(2): 152-155.

[48]

INCE C, BOERMA E C, CECCONI M, et al. Second consensus on the assessment of sublingual microcirculation in critically ill patients: Results from a task force of the European Society of Intensive Care Medicine[J]. Intensive Care Med, 2018, 44(3): 281-299.

[49]

GRONER W, WINKELMAN J W, HARRIS A G, et al. Orthogonal polarization spectral imaging: A new method for study of the microcirculation[J]. Nat Med, 1999, 5(10): 1209-1212.

[50]

GOEDHART P T, KHALILZADA M, BEZEMER R, et al. Sidestream Dark Field (SDF) imaging: A novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation[J]. Opt Express, 2007, 15(23): 15101-15114.

[51]

DEN OS M M, VAN DEN BROM C E, VAN LEEUWEN A L I, et al. Microcirculatory perfusion disturbances following cardiopulmonary bypass: A systematic review[J]. Crit Care, 2020, 24(1): 218.

[52]

AMSON H, VACHERON C H, THIOLLIERE F, et al. Core-to-skin temperature gradient measured by thermography predicts day-8 mortality in septic shock: A prospective observational study[J]. J Crit Care, 2020, 60: 294-299.

[53]

HAQUE A, MILSTEIN A, LI F F. Illuminating the dark spaces of healthcare with ambient intelligence[J]. Nature, 2020, 585(7824): 193-202.

[54]

HYLAND S L, FALTYS M, H SER M, et al. Early prediction of circulatory failure in the intensive care unit using machine learning[J]. Nat Med, 2020, 26(3): 364-373.

相關(guān)知識

數(shù)字健康在心血管疾病研究領(lǐng)域的技術(shù)演進
研究進展
橋梁健康監(jiān)測數(shù)據(jù)分析研究綜述.pdf
減胎術(shù)對孕婦心理健康影響的研究進展
生態(tài)系統(tǒng)健康研究進展
關(guān)于申報2024年度安徽省運動健康信息監(jiān)測技術(shù)工程研究中心開放課題項目的通知
中國基因與細(xì)胞治療研究突飛猛進!國內(nèi)多家基因、生物技術(shù)企業(yè)展露鋒芒
分娩鎮(zhèn)痛期間飲食管理的研究進展
環(huán)境污染與先天性心臟病的研究進展
愛幼媽媽:腸道微生物與嬰幼兒健康研究進展

網(wǎng)址: ICU病人生理參數(shù)監(jiān)測技術(shù)的研究進展 http://m.u1s5d6.cn/newsview77054.html

推薦資訊