Fermentation Characteristics and Intestinal Health Effects of Fiber Components
摘要: 膳食纖維是動物飼糧中重要的營養(yǎng)物質(zhì), 其不能被機體分泌的消化酶降解, 但能被腸道微生物發(fā)酵生成短鏈脂肪酸, 并通過調(diào)節(jié)腸道微生物區(qū)系和免疫功能改善動物腸道健康。膳食纖維的復(fù)雜結(jié)構(gòu)及功能單元組成差異導(dǎo)致其發(fā)酵特性具有較大的變異性。纖維組分作為膳食纖維的基本結(jié)構(gòu)與功能單元, 其發(fā)酵特性與功能作用較為穩(wěn)定, 且與膳食纖維的功能調(diào)控特性具有直接的聯(lián)系。不同纖維組分間的糖苷鍵連接方式、單糖組成與聚合度間的差異, 使其具有不同的發(fā)酵特性和生物學(xué)功能。本文系統(tǒng)地總結(jié)了纖維組分的分類、結(jié)構(gòu)性質(zhì)與體內(nèi)外發(fā)酵特性, 并結(jié)合其發(fā)酵產(chǎn)物闡釋了不同纖維組分調(diào)控腸道微生物區(qū)系及動物腸道健康的作用機制, 以期為膳食纖維在畜牧業(yè)中的深度合理利用提供科學(xué)依據(jù)。
Abstract: Dietary fiber is an important nutrient in animal diets, which cannot be degraded by digestive enzymes secreted by the body, but can be fermented by gut microorganisms to produce short-chain fatty acids, and improve intestinal health by regulating intestinal microbiota and immune function. The complex structure and functional unit composition of dietary fiber result in the great variability of its fermentation characteristics. As the basic structure and functional unit of dietary fiber, the fermentation characteristics and functional role of fiber components are relatively stable, and there are directly related to the functional regulation characteristics of dietary fiber. The differences of glycosidic bond connection, monosaccharide composition and degree of polymerization among different fiber components make them have different fermentation characteristics and biological functions. In this paper, we systematically summarized the classification, structural properties and fermentation characteristics of fiber components in vitro and in vivo. Combined with the fermentation products, we explained the mechanism of different fiber components in regulating intestinal microbiota and intestinal health of animals, in order to provide a scientific basis for the deep and rational utilization of dietary fiber in animal husbandry.
Key words: fiber components fermentation characteristics gut microorganism intestinal health
我國糧食資源豐富,但對糧食加工副產(chǎn)物、雜粕以及陳化糧等非常規(guī)飼料原料的利用率不高,這造成了資源的極大浪費。膳食纖維(dietary fiber,DF)是非常規(guī)飼料原料中重要的化學(xué)成分,但存在含量高、組成結(jié)構(gòu)復(fù)雜且組分變異大等問題,影響了非常規(guī)飼料原料的深度開發(fā)利用。作為DF結(jié)構(gòu)與功能單元的纖維組分,包括木質(zhì)素、纖維素、果膠、β-葡聚糖、木聚糖、阿拉伯木聚糖和葡甘露聚糖等,其發(fā)酵特性較為穩(wěn)定。但由于不同纖維組分間親水性、分子結(jié)構(gòu)和功能單元的差別,導(dǎo)致DF的動物腸道發(fā)酵特性及其對宿主腸道健康的調(diào)控作用存在很大差異。本文從纖維組分層面著手,深入闡釋了其在豬消化道內(nèi)的微生物代謝利用規(guī)律與宿主健康調(diào)節(jié)效應(yīng),以期為DF及非常規(guī)飼料原料在畜牧領(lǐng)域的高效合理利用提供參考。
1 纖維組分概述
纖維組分本質(zhì)上是植物來源的碳水化合物聚合物,主要包括植物細(xì)胞壁成分木質(zhì)素、纖維素、半纖維素和果膠等,而半纖維素包含葡聚糖、木聚糖、阿拉伯木聚糖和葡甘露聚糖等組分。此外,一些不可消化的碳水化合物如抗性淀粉、低聚半乳糖和低聚果糖等植物源性纖維也屬于纖維組分。
1.1 纖維組分來源與結(jié)構(gòu)性質(zhì)1.1.1 纖維素
纖維素是自然界目前發(fā)現(xiàn)含量最為豐富的纖維組分,其作為大多數(shù)植物細(xì)胞壁的主要成分,廣泛存在于水果、蔬菜和谷物中。纖維素作為一種線性多糖,沒有任何支鏈,每分子多糖由多達(dá)10 000個葡萄糖分子組成,且線性分子間通過多重折疊形成致密結(jié)構(gòu),其難溶于水并抗腸道消化酶分解[1]。麥麩纖維含有大量纖維素,纖維素不溶于水的特性賦予麥麩纖維強大的水結(jié)合能力,其被動物采食后能夠促進胃腸道蠕動,有助于增加排便量[2-3]。
1.1.2 果膠
果膠是存在于植物細(xì)胞壁中的難消化多聚糖,廣泛存在于水果與蔬菜的外皮中。其分子結(jié)構(gòu)包括直鏈與支鏈2種形式,主鏈主要由半乳糖醛酸構(gòu)成,同時伴有少量的鼠李糖,其支鏈主要由己糖和戊糖2種糖單元構(gòu)成[4]。具有支鏈結(jié)構(gòu)的果膠容易與水分子結(jié)合,故果膠屬于可溶性纖維組分且具有較大的黏性。果膠遇水形成凝膠珠后與其他物質(zhì)相結(jié)合,研究發(fā)現(xiàn),果膠具有降低機體膽固醇的作用,其機理即為果膠分子與腸道中的膽固醇、膽汁酸結(jié)合后一起被排出體外[5]。果膠獨特的黏性還能夠改變其他營養(yǎng)物質(zhì)的腸道利用位點,研究發(fā)現(xiàn),斷奶仔豬飼糧中添加果膠,能夠引起DF在腸道中的發(fā)酵位點整體后移,有利于緩解高能、高脂飼糧給機體帶來的不良效應(yīng)[6]。
1.1.3 β-葡聚糖
β-葡聚糖的單糖組成與纖維素相同,但與直鏈結(jié)構(gòu)纖維素不同的是,β-葡聚糖分子單元間以多種連接鍵構(gòu)成,屬于含有支鏈且聚合度較小的天然聚糖,獨特的支鏈結(jié)構(gòu)使其溶于水后易形成黏性溶液[7]。β-葡聚糖來源廣泛,可從燕麥、海藻、谷物、蘑菇和大麥等多種植物中獲得,也存在于多種細(xì)菌和真菌中,如新型隱球菌、煙曲霉、白色念珠菌、莢膜組織胞漿菌和釀酒酵母等。β-葡聚糖廣泛的來源與多重結(jié)構(gòu)使其具有多種生物學(xué)功能特性[8],日常攝入β-葡聚糖可以通過調(diào)節(jié)血糖、血脂與血壓從而有效改善糖尿病癥狀及并發(fā)癥[9]。
1.1.4 半纖維素
半纖維素與纖維素都是植物細(xì)胞壁的主要聚糖成分,不同的是纖維素的結(jié)構(gòu)單元只有葡萄糖,而半纖維素單糖組成與分子結(jié)構(gòu)更為復(fù)雜[10-11]。半纖維素主要包括直鏈與支鏈2種結(jié)構(gòu),其分子通常含有50~200個戊糖(木糖和阿拉伯糖)和己糖(葡萄糖、半乳糖、甘露糖、鼠李糖、葡萄糖醛酸和半乳糖醛酸)單元。半纖維素實際上并不是單一類型的纖維而是一類纖維組分的統(tǒng)稱,常見的半纖維素包括木聚糖、阿拉伯木聚糖、葡甘露聚糖、木葡聚糖和甘露聚糖等[12]。木聚糖是禾本科和雙子葉植物次生細(xì)胞壁中的一類主要纖維組分,也是植物莖部木質(zhì)導(dǎo)管的主要結(jié)構(gòu)元素。阿拉伯木聚糖結(jié)構(gòu)與木聚糖類似,但不同于木聚糖全部由木糖單元組成,阿拉伯木聚糖屬于雜多糖,其主鏈上的木糖與阿拉伯糖以糖苷鍵相連,而乙?;鶊F與糖醛酸也能夠連接主鏈上的木糖單元。葡甘露聚糖也是一種重要的半纖維素,其廣泛存在于多種植物中,尤其是根莖類植物。絕大多數(shù)來源的葡甘露聚糖為可溶性纖維組分,其主鏈由甘露糖與葡萄糖通過β-1, 4-糖苷鍵相連,甘露糖與葡萄糖之比為3 ∶ 1。葡甘露聚糖也是重要的功能性多糖,能夠促進成纖維細(xì)胞生長因子分泌和細(xì)胞增殖,被廣泛應(yīng)用于創(chuàng)傷藥物中調(diào)控傷口或燒傷部位膠原蛋白的產(chǎn)生和分泌[13]。此外,斷奶仔豬飼糧中添加葡甘露聚糖,可以有效促進其腸道發(fā)育[14]。甘露聚糖是植物細(xì)胞壁的重要組成部分,其主鏈由95%的甘露糖組成,還包含有少量的半乳糖,是象牙堅果、棗子和綠咖啡豆種子的主要結(jié)構(gòu)單元[15]。
1.1.5 抗性淀粉
抗性淀粉是一類特殊淀粉及其降解產(chǎn)物的總稱。與DF類似,其同樣不能被單胃動物前腸道分泌的消化酶降解,而只能被腸道微生物發(fā)酵代謝,因此根據(jù)其營養(yǎng)特性將其歸類為纖維組分??剐缘矸郯磥碓磁c結(jié)構(gòu)特點可以劃分為RSⅠ~RSⅣ4種類型。廣泛的研究證明,抗性淀粉可以通過調(diào)節(jié)腸道微生態(tài)來對機體的生長發(fā)育產(chǎn)生影響,也能夠特異性調(diào)控腸道中丁酸的產(chǎn)生[16]。
1.1.6 不可消化性低聚糖
低聚糖大多自然存在于水果、蔬菜與谷物中,聚合度通常在3~10[10],也可通過單糖化學(xué)合成或酶解多聚糖后得到。常見的低聚糖包括低聚果糖、低聚半乳糖以及混合型低聚糖,它們主要來源于菊芋、蒲公英、菊苣、韭菜、洋蔥和蘆筍等。此外,蔗糖可以在化學(xué)條件下通過酶促反應(yīng)合成低聚果糖,而大豆可以在自然條件下利用乳糖合成低聚半乳糖并將其儲存于籽實中[17]。研究發(fā)現(xiàn),生長豬采食低聚果糖、低聚半乳糖以及菊粉等低聚糖后,有利于腸道有益菌增殖與丁酸產(chǎn)生,并增加機體對鈣、鎂的吸收,消除腸道有毒化合物[18]。
1.2 纖維組分的水合特性1.2.1 溶解性
研究認(rèn)為,溶解性是影響DF發(fā)酵特性最重要的理化指標(biāo),通常根據(jù)DF在水中的分散能力對其進行分類,不同的纖維組分在水中的溶解度存在較大差別[19-20]??扇苄岳w維組分主要包括果膠、木聚糖、阿拉伯木聚糖和β-葡聚糖等,不可溶性纖維組分主要包括纖維素和木質(zhì)素。
1.2.2 持水力
持水力是通過測定特定溫度、浸泡時間和離心速度條件下,纖維保留的水量來反映纖維親水能力[10]。纖維具有持水性的原理在于部分多糖具有較強的親水性,水分子可以結(jié)合在多糖本身的親水部位,或者儲存在多糖多維結(jié)構(gòu)的空隙中。
1.2.3 黏性
不同類型纖維組分的黏性存在很大差異,果膠、瓜爾膠、葡甘露聚糖和β-葡聚糖都是具有代表性的黏性纖維組分。纖維組分的黏性受到剪切速率、溫度、濕度、時間、分子量、粒度、化學(xué)組成和結(jié)構(gòu)、加工條件和酸堿條件等多種因素影響,纖維的分子量與其在溶劑中的黏性呈正向的線性相關(guān)關(guān)系[21]。黏性纖維容易在腸道內(nèi)形成凝膠,與腸道內(nèi)食糜結(jié)合后增加了食糜的黏度,起到潤滑糞便的作用。
1.2.4 結(jié)合力
DF的多重折疊結(jié)構(gòu)同樣使其具有結(jié)合其他分子的能力。β-葡聚糖已被發(fā)現(xiàn)能夠結(jié)合前腸道的膽汁酸,并攜帶其到回腸末端引起膽汁酸再吸收。但飼糧中過多的果膠、葡聚糖及葡甘露聚糖等黏性纖維組分會提高食糜黏度,而腸道中腹瀉相關(guān)毒力因子的增多與食糜黏度的升高密切相關(guān)[22]。
1.2.5 膨脹性
膨脹性是不可溶性纖維組分普遍的理化特性,纖維組分的膨脹性與其結(jié)構(gòu)的疏水力密切相關(guān)。纖維素與木質(zhì)素作為重要的不可溶性纖維組分形態(tài)呈顆粒狀且持水力較低,從而能夠有效增大糞便體積。麥麩纖維已被證明對糞便具有良好的膨化作用,此外一些高膨脹性的纖維組分也能夠有效地增大糞便體積。
2 纖維組分的發(fā)酵特性2.1 纖維組分的體外發(fā)酵特性
體外發(fā)酵試驗技術(shù)近年來常被用來評價纖維的發(fā)酵特性,與人和動物的體內(nèi)試驗相比,其發(fā)酵條件更加可控,允許試驗過程中動態(tài)取樣,有利于闡明纖維組分的發(fā)酵特性及其與腸道微生物的互作規(guī)律。目前,前人利用體外發(fā)酵模型對DF的發(fā)酵特性已經(jīng)進行了諸多研究,包括小麥麩、燕麥麩等常見纖維原料[23],菊粉、纖維素、阿拉伯木聚糖、β-葡聚糖、抗性淀粉和葡甘露聚糖等纖維聚糖[24-25],以及低聚果糖等多種不可消化低聚糖[7]。綜合研究結(jié)果表明,抗性淀粉能夠在近端結(jié)腸快速發(fā)酵,其發(fā)酵過程中顯著富集了雙歧桿菌屬(Bifidobacterium)、布勞特氏菌屬(Blautia)和擬桿菌屬(Bacteroides)等微生物,且抗性淀粉的添加有效地促進了乙酸與丁酸的生成[26-27]。阿拉伯木聚糖、木葡聚糖、果膠和β-葡聚糖等多聚糖屬于快速發(fā)酵纖維組分,阿拉伯木聚糖和β-葡聚糖發(fā)酵能夠有效促進乙酸與丁酸的生成,且阿拉伯木聚糖發(fā)酵富集了擬桿菌屬、糞球菌屬(Coprococcus)和糞桿菌屬(Faecalibacterium)等微生物,而β-葡聚糖顯著促進了糞芽孢菌屬(Coprobacillus)、多雷亞菌屬(Dorea)、乳桿菌屬(Lactobacillus)和腸球菌屬(Enterococcus)等微生物的增殖[27-28]。木葡聚糖和果膠體外發(fā)酵則共同促進了丙酸的生成[29-30]。葡甘露聚糖的發(fā)酵速率與抗性淀粉相似,屬于慢速發(fā)酵纖維組分[31]。菊粉、低聚果糖以及低聚半乳糖等低聚糖的空間結(jié)構(gòu)較為簡單,能夠被腸道微生物迅速發(fā)酵而屬于快速發(fā)酵纖維組分。菊粉與低聚果糖發(fā)酵促進了乙酸與丁酸的生成以及有益菌雙歧桿菌屬、多雷亞菌屬、乳桿菌屬和普雷沃氏菌屬(Prevotella)的增殖[28, 31]。
2.2 纖維組分的體內(nèi)發(fā)酵特性
纖維組分組成與含量差異使得不同飼糧纖維的腸道發(fā)酵率變異較大(40%~60%)。傳統(tǒng)的觀念認(rèn)為纖維組分主要在豬后腸道中被降解,實際上前腸道微生物對于可溶性纖維組分的降解也具有不可忽視的意義[32],麥麩與干酒糟及其可溶物(distillers dried grains with solubles,DDGS)中高含量的不可溶性纖維組分,降低了麥麩與DDGS纖維的前腸道降解率[33]。此外,不同類型纖維組分的豬后腸道發(fā)酵率也具有很大差異(48%~95%)[33],Jaworski等[34]研究發(fā)現(xiàn),纖維原料中的可溶性纖維組分主要在豬盲腸中被發(fā)酵,并沒有為結(jié)腸提供較多的能量,而不溶性纖維組分主要在豬結(jié)腸中發(fā)酵,是豬結(jié)腸的主要能量來源。
3 纖維組分的腸道健康效應(yīng)3.1 纖維組分的腸道微生物調(diào)節(jié)效應(yīng)
近年來纖維素作為典型的不可溶性纖維組分,引起了廣泛關(guān)注。Tian等[35]研究發(fā)現(xiàn),斷奶仔豬采食以纖維素為單一纖維源的飼糧后,仔豬盲腸放線桿菌屬(Actinobacillus)和乳桿菌屬菌的相對豐度顯著上升,擬桿菌門(Bacteroidetes)菌的相對豐度顯著降低;而仔豬采食果膠后結(jié)腸短鏈脂肪酸(short chain fatty acids, SCFAs)含量顯著上升,雖然乳桿菌屬菌相對豐度有一定程度的下降,但纖維分解菌普雷沃氏菌屬的相對豐度顯著上升。Nguyen等[36]研究發(fā)現(xiàn),果膠可以提高回腸乳桿菌屬數(shù)量及后腸道微生物多樣性。Wang等[37]研究發(fā)現(xiàn),生長豬采食無纖維飼糧引起后腸道菌群紊亂,而攝入木聚糖2周后腸道菌群得到了顯著的改善,且驗證試驗表明,木聚糖通過促進假小鏈雙歧桿菌(Bifidobacterium pseudocatenulatum)的產(chǎn)生來緩解纖維剝奪引起的菌群失調(diào)。但Bai等[38]研究卻發(fā)現(xiàn),仔豬哺乳期采食木聚糖會造成其斷奶后生長性能下降,哺乳期采食低聚木糖卻能夠提高仔豬斷奶后的生長性能,這一現(xiàn)象可能因為哺乳仔豬腸道微生態(tài)發(fā)育成熟度較低,難以降解高聚合度的木聚糖,而采食低聚木糖能夠增加微生物群的發(fā)酵能力和纖維降解酶的分泌量,進而來提高其斷奶后的生長性能和飼料效率。
阿拉伯木聚糖易溶于水且容易被微生物發(fā)酵利用,其中擬桿菌屬是降解阿拉伯木聚糖的主要微生物。擬桿菌屬在結(jié)腸前段將阿拉伯木聚糖降解為小分子物質(zhì),然后被雙歧桿菌屬和乳桿菌屬等微生物發(fā)酵代謝。飼糧中添加β-葡聚糖同樣可以促進雙歧桿菌屬和乳桿菌屬菌以及其他丁酸產(chǎn)生菌的增殖,但β-葡聚糖卻不能被腸桿菌科(Enterobacteriaceae)菌降解[39]。而研究發(fā)現(xiàn),厚壁菌門(Firmicutes)下的腸道羅斯氏菌(Roseburia intestinalis)是腸道內(nèi)降解葡甘露聚糖的主要微生物。
3.2 纖維組分的腸道健康調(diào)節(jié)效應(yīng)
纖維發(fā)酵過程中SCFAs產(chǎn)生量及比例都會大大受到發(fā)酵底物的影響。以可溶性纖維組分阿拉伯木聚糖為例,肉雞飼糧中添加阿拉伯木聚糖顯著提高了盲腸雙歧桿菌屬菌的相對豐度,可以有效促進腸道杯狀細(xì)胞的增殖與免疫球蛋白(immunoglobulin,Ig)A的分泌,且杯狀細(xì)胞分泌的黏蛋白能夠保護腸道黏液層并阻止病原菌的滲透從而有助于腸道屏障改善[40]。而飼糧中添加β-葡聚糖可以促進雙歧桿菌屬和乳桿菌屬菌以及其他多種丁酸產(chǎn)生菌的增殖,丁酸是腸道菌群有益代謝產(chǎn)物,有助于腸道健康改善。結(jié)腸炎癥以及結(jié)腸癌與日常飲食密切相關(guān),β-葡聚糖攝入可以通過產(chǎn)生抑炎因子、激活白細(xì)胞、轉(zhuǎn)移并抑制腫瘤生長來抑制結(jié)腸癌[41]。對其作用機制進一步探究后發(fā)現(xiàn),β-葡聚糖主要在盲腸與結(jié)腸中被微生物發(fā)酵為丁酸,丁酸通過促進腸道上皮細(xì)胞再生來預(yù)防和治療結(jié)腸癌[42-44]。纖維素屬于不可溶性纖維組分,其健康調(diào)控效應(yīng)也備受關(guān)注。Tian等[35]研究發(fā)現(xiàn),纖維素飼糧相比無纖維飼糧顯著提高了豬后腸道中多種纖維分解菌的豐度,也促進回腸中乳桿菌屬菌的增殖。飼糧缺乏DF會破壞腸道菌群多樣性與成熟度、引發(fā)腸道炎癥,而小鼠在采食含有纖維素飼糧后腸道免疫與屏障功能顯著改善[45]。
4 小結(jié)
腸道健康是影響豬生產(chǎn)效率的重要因素,而DF作為飼糧的重要組成部分對豬的腸道健康具有極其重大的影響。DF是由不同纖維組分構(gòu)成的混合型聚糖,纖維組分的組成、單糖糖苷鍵或異構(gòu)型不同,會使得DF發(fā)酵特性、調(diào)控腸道微生態(tài)和健康的能力等方面出現(xiàn)顯著差異。因此,根據(jù)纖維組分在豬不同階段、各個腸段的消化釋放特征與健康調(diào)節(jié)效應(yīng),來綜合評判豬對DF的利用情況,有利于對不同營養(yǎng)健康狀態(tài)的豬群進行靶向性調(diào)控。但當(dāng)前對纖維組分營養(yǎng)與健康特性的研究大多集中于單一纖維組分,缺乏纖維組分合理搭配改善豬生長發(fā)育與腸道健康的研究。此外,基于豬對纖維組分在不同腸段綜合利用情況的評判,對原料纖維組分的改造與搭配也有待進一步研究。
參考文獻
[1]SEDDIQI H, OLIAEI E, HONARKAR H, et al. Cellulose and its derivatives: towards biomedical applications[J]. Cellulose, 2021, 28(4): 1893-1931. DOI:10.1007/s10570-020-03674-w
[2]ZHAO J B, LIU P, WU Y, et al. Dietary fiber increases butyrate-producing bacteria and improves the growth performance of weaned piglets[J]. Journal of Agricultural and Food Chemistry, 2018, 66(30): 7995-8004. DOI:10.1021/acs.jafc.8b02545
[3]WEBER T E, KERR B J. Metabolic effects of dietary sugar beet pulp or wheat bran in growing female pigs[J]. Journal of Animal Science, 2012, 90(2): 523-532. DOI:10.2527/jas.2010-3613
[4]BEUKEMA M, FAAS M M, DE VOS P. The effects of different dietary fiber pectin structures on the gastrointestinal immune barrier: impact via gut microbiota and direct effects on immune cells[J]. Experimental & Molecular Medicine, 2020, 52(9): 1364-1376.
[5]ELSHAHED M S, MIRON A, APROTOSOAIE A C, et al. Pectin in diet: interactions with the human microbiome, role in gut homeostasis, and nutrient-drug interactions[J]. Carbohydrate Polymers, 2021, 255: 117388. DOI:10.1016/j.carbpol.2020.117388
[6]TIAN L M, BRUGGEMAN G, VAN DEN BERG M, et al. Effects of pectin on fermentation characteristics, carbohydrate utilization, and microbial community composition in the gastrointestinal tract of weaning pigs[J]. Molecular Nutrition & Food Research, 2017, 61(1): 1600186.
[7]FEHLBAUM S, PRUDENCE K, KIEBOOM J, et al. In vitro fermentation of selected prebiotics and their effects on the composition and activity of the adult gut microbiota[J]. International Journal of Molecular Sciences, 2018, 19(10): 3097. DOI:10.3390/ijms19103097
[8]JAYACHANDRAN M, CHEN J L, CHUNG S S M, et al. A critical review on the impacts of β-glucans on gut microbiota and human health[J]. The Journal of Nutritional Biochemistry, 2018, 61: 101-110. DOI:10.1016/j.jnutbio.2018.06.010
[9]CHAN G C F, CHAN W K, SZE D M Y. The effects of β-glucan on human immune and cancer cells[J]. Journal of Hematology & Oncology, 2009, 2: 25.
[10]ALEXANDER C, SWANSON K S, FAHEY G C, et al. Perspective: physiologic importance of short-chain fatty acids from nondigestible carbohydrate fermentation[J]. Advances in Nutrition, 2019, 10(4): 576-589. DOI:10.1093/advances/nmz004
[11]GENG W H, NARRON R, JIANG X, et al. The influence of lignin content and structure on hemicellulose alkaline extraction for non-wood and hardwood lignocellulosic biomass[J]. Cellulose, 2019, 26(5): 3219-3230. DOI:10.1007/s10570-019-02261-y
[12]ALOKIKA, A NU, KUMAR A, et al. Cellulosic and hemicellulosic fractions of sugarcane bagasse: potential, challenges and future perspective[J]. International Journal of Biological Macromolecules, 2021, 169: 564-582. DOI:10.1016/j.ijbiomac.2020.12.175
[13]SHAHZAD M N, AHMED N. Effectiveness of Aloe Vera gel compared with 1% silver sulphadiazine cream as burn wound dressing in second degree burns[J]. The Journal of the Pakistan Medical Association, 2013, 63(2): 225-230.
[14]ANJOS C M D, GOIS F D, ANJOS C M D, et al. Effects of dietary beta-glucans, glucomannans and mannan oligosaccharides or chlorohydroxyquinoline on the performance, diarrhea, hematological parameters, organ weight and intestinal health of weanling pigs[J]. Livestock Science, 2019, 223: 39-46. DOI:10.1016/j.livsci.2019.02.018
[15]DE O. PETKOWICZ C L, REICHER F, CHANZY H, et al. Linear mannan in the endosperm of Schizolobium amazonicum[J]. Carbohydrate Polymers, 2001, 44(2): 107-112. DOI:10.1016/S0144-8617(00)00212-5
[16]BANG S J, LEE E S, SONG E J, et al. Effect of raw potato starch on the gut microbiome and metabolome in mice[J]. International Journal of Biological Macromolecules, 2019, 133: 37-43. DOI:10.1016/j.ijbiomac.2019.04.085
[17]MARTINS G N, URETA M M, TYMCZYSZYN E E, et al. Technological aspects of the production of fructo and galacto-oligosaccharides.Enzymatic synthesis and hydrolysis[J]. Frontiers in Nutrition, 2019, 6: 78. DOI:10.3389/fnut.2019.00078
[18]ROBERFROID M. Dietary fiber, inulin, and oligofructose: a review comparing their physiological effects[J]. Critical Reviews in Food Science and Nutrition, 1993, 33(2): 103-148. DOI:10.1080/10408399309527616
[19]LOVEGROVE A, EDWARDS C H, DE NONI I, et al. Role of polysaccharides in food, digestion, and health[J]. Critical Reviews in Food Science and Nutrition, 2017, 57(2): 237-253. DOI:10.1080/10408398.2014.939263
[20]TIWARI U P, SINGH A K, JHA R. Fermentation characteristics of resistant starch, arabinoxylan, and β-glucan and their effects on the gut microbial ecology of pigs: a review[J]. Animal Nutrition, 2019, 5(3): 217-226. DOI:10.1016/j.aninu.2019.04.003
[21]GUNN D, MURTHY R, MAJOR G, et al. Contrasting effects of viscous and particulate fibers on colonic fermentation in vitro and in vivo, and their impact on intestinal water studied by MRI in a randomized trial[J]. The American Journal of Clinical Nutrition, 2020, 112(3): 595-602. DOI:10.1093/ajcn/nqaa173
[22]ZIJLSTRA R T, FOUHSE J M, BELTRANENA E, et al. Use of dietary carbohydrates as prebiotic in swine diets[J]. Journal of Animal Science, 2016, 94(Supplement 2): 127.
[23]BAI Y, ZHAO J B, TAO S Y, et al. Effect of dietary fiber fermentation on short-chain fatty acid production and microbial composition in vitro[J]. Journal of the Science of Food and Agriculture, 2020, 100(11): 4282-4291. DOI:10.1002/jsfa.10470
[24]BAI Y, ZHOU X J, LI N, et al. In vitro fermentation characteristics and fiber-degrading enzyme kinetics of cellulose, arabinoxylan, β-glucan and glucomannan by pig fecal microbiota[J]. Microorganisms, 2021, 9(5): 1071. DOI:10.3390/microorganisms9051071
[25]SHI X D, YIN J Y, CUI S W, et al. Comparative study on glucomannans with different structural characteristics: functional properties and intestinal production of short chain fatty acids[J]. International Journal of Biological Macromolecules, 2020, 164: 826-835. DOI:10.1016/j.ijbiomac.2020.07.186
[26]PLONGBUNJONG V, GRAIDIST P, KNUDSEN K E B, et al. Starch-based carbohydrates display the bifidogenic and butyrogenic properties in pH-controlled faecal fermentation[J]. International Journal of Food Science & Technology, 2017, 52(12): 2647-2653.
[27]KAUR A, CHEN T T, GREEN S J, et al. Physical inaccessibility of a resistant starch shifts mouse gut microbiota to butyrogenic Firmicutes[J]. Molecular Nutrition & Food Research, 2019, 63(7): e1801012.
[28]CHEN T T, LONG W M, ZHANG C H, et al. Fiber-utilizing capacity varies in Prevotella-versus Bacteroides-dominated gut microbiota[J]. Scientific Reports, 2017, 7(1): 2594. DOI:10.1038/s41598-017-02995-4
[29]FENG G L, MIKKELSEN D, HOEDT E C, et al. In vitro fermentation outcomes of arabinoxylan and galactoxyloglucan depend on fecal inoculum more than substrate chemistry[J]. Food & Function, 2020, 11(9): 7892-7904.
[30]FERREIRA-LAZARTE A, KACHRIMANIDOU V, VILLAMIEL M, et al. In vitro fermentation properties of pectins and enzymatic-modified pectins obtained from different renewable bioresources[J]. Carbohydrate Polymers, 2018, 199: 482-491. DOI:10.1016/j.carbpol.2018.07.041
[31]JONATHAN M C, VAN DEN BORNE J J G C, VAN WIECHEN P, et al. In vitro fermentation of 12 dietary fibres by faecal inoculum from pigs and humans[J]. Food Chemistry, 2012, 133(3): 889-897. DOI:10.1016/j.foodchem.2012.01.110
[32]XU C H, LIU J H, GAO J W, et al. The effect of functional fiber on microbiota composition in different intestinal segments of obese mice[J]. International Journal of Molecular Sciences, 2021, 22(12): 6525. DOI:10.3390/ijms22126525
[33]JHA R, LETERME P. Feed ingredients differing in fermentable fibre and indigestible protein content affect fermentation metabolites and faecal nitrogen excretion in growing pigs[J]. Animal, 2012, 6(4): 603-611. DOI:10.1017/S1751731111001844
[34]JAWORSKI N W, STEIN H H. Disappearance of nutrients and energy in the stomach and small intestine, cecum, and colon of pigs fed corn-soybean meal diets containing distillers dried grains with solubles, wheat middlings, or soybean hulls[J]. Journal of Animal Science, 2017, 95(2): 727-739. DOI:10.2527/jas.2016.0752
[35]TIAN G, WU X Y, CHEN D W, et al. Adaptation of gut microbiome to different dietary nonstarch polysaccharide fractions in a porcine model[J]. Molecular Nutrition & Food Research, 2017, 61(10): 1700012.
[36]NGUYEN H T T, KHERAVⅡ S K, WU S B, et al. Sources and levels of copper affect liver copper profile, intestinal morphology and cecal microbiota population of broiler chickens fed wheat-soybean meal diets[J]. Scientific Reports, 2022, 12(1): 2249. DOI:10.1038/s41598-022-06204-9
[37]WANG Z Y, BAI Y, PI Y, et al. Xylan alleviates dietary fiber deprivation-induced dysbiosis by selectively promoting Bifidobacterium pseudocatenulatum in pigs[J]. Microbiome, 2021, 9(1): 227. DOI:10.1186/s40168-021-01175-x
[38]BAI Y, WANG Z Y, ZHOU X J, et al. Ingestion of xylooligosaccharides during the suckling period improve the feed efficiency and hindgut fermentation capacity of piglets after weaning[J]. Food & Function, 2021, 12(21): 10459-10469.
[39]BECKMANN L, SIMON O, VAHJEN W. Isolation and identification of mixed linked beta-glucan degrading bacteria in the intestine of broiler chickens and partial characterization of respective 1, 3-1, 4-beta-glucanase activities[J]. Journal of Basic Microbiology, 2006, 46(3): 175-185. DOI:10.1002/jobm.200510107
[40]MENDIS M, SIMSEK S. Production of structurally diverse wheat arabinoxylan hydrolyzates using combinations of xylanase and arabinofuranosidase[J]. Carbohydrate Polymers, 2015, 132: 452-459. DOI:10.1016/j.carbpol.2015.05.083
[41]QI J M, YU J T, LI Y T, et al. Alternating consumption of β-glucan and quercetin reduces mortality in mice with colorectal cancer[J]. Food Science & Nutrition, 2019, 7(10): 3273-3285.
[42]HAJJAR R, RICHARD C S, SANTOS M M. The role of butyrate in surgical and oncological outcomes in colorectal cancer[J]. American Journal of Physiology Gastrointestinal and Liver Physiology, 2021, 320(4): G601-G608. DOI:10.1152/ajpgi.00316.2020
[43]THIRUVENGADAM M, SUBRAMANIAN U, VENKIDASAMY B, et al. Emerging role of nutritional short-chain fatty acids (SCFAs) against cancer via modulation of hematopoiesis[J]. Critical Reviews in Food Science and Nutrition, 2021, 1-18.
[44]SCHL?RMANN W, ATANASOV J, LORKOWSKI S, et al. Study on chemopreventive effects of raw and roasted β-glucan-rich waxy winter barley using an in vitro human colon digestion model[J]. Food & Function, 2020, 11(3): 2626-2638.
[45]FISCHER F, ROMERO R, HELLHUND A, et al. Dietary cellulose induces anti-inflammatory immunity and transcriptional programs via maturation of the intestinal microbiota[J]. Gut Microbes, 2020, 12(1): 1829962.
相關(guān)知識
Fiber supplements and clinically proven health benefits: How to recognize and recommend an effective fiber therapy
Liquid fermentation technology and functional components of edible and medicinal fungi
Research Progress of Probiotics, Prebiotics, Synbiotics and Intestinal Health in Canine and Feline
Interaction between polysaccharide and intestinal flora and its structure
Defining a Healthy Diet: Evidence for the Role of Contemporary Dietary Patterns in Health and Disease
The Health Benefits of Dietary Fibre
Application and effects of health education and management in chronic disease prevention and treatment of elderly in community
Why Healing Your Gut (and Keeping Your Gut Happy) Is Essential for Good Health
Analysis of Edible Quality and Aroma Characteristics of Fruits in Five Cultivars of Psidium guajava
Lifestyle Medicine: The Health Promoting Power of Daily Habits and Practices
網(wǎng)址: Fermentation Characteristics and Intestinal Health Effects of Fiber Components http://m.u1s5d6.cn/newsview1722290.html
推薦資訊
- 1發(fā)朋友圈對老公徹底失望的心情 12775
- 2BMI體重指數(shù)計算公式是什么 11235
- 3補腎吃什么 補腎最佳食物推薦 11199
- 4性生活姿勢有哪些 盤點夫妻性 10428
- 5BMI正常值范圍一般是多少? 10137
- 6在線基礎(chǔ)代謝率(BMR)計算 9652
- 7一邊做飯一邊躁狂怎么辦 9138
- 8從出汗看健康 出汗透露你的健 9063
- 9早上怎么喝水最健康? 8613
- 10五大原因危害女性健康 如何保 7828