首頁 資訊 案例學(xué)習(xí):美國奧本大學(xué)基于BIM的施工安全管理

案例學(xué)習(xí):美國奧本大學(xué)基于BIM的施工安全管理

來源:泰然健康網(wǎng) 時(shí)間:2024年12月28日 18:57

BIM for Construction Safety: A Case Study

案例學(xué)習(xí):美國奧本大學(xué)基于BIM的施工安全管理

作者:Alex Behringer, Salman Azhar 來源:JBIM_fall

【門戶導(dǎo)讀】施工安全計(jì)劃的一個(gè)關(guān)鍵因素是在危害發(fā)生之前能夠正確識別其所有發(fā)生的可能。BIM允許項(xiàng)目參與者直觀地評估現(xiàn)場條件和識別風(fēng)險(xiǎn),并提供給他們足夠的時(shí)間來制定適當(dāng)?shù)娘L(fēng)險(xiǎn)緩解計(jì)劃。

–本文由翻譯組翻譯,轉(zhuǎn)載請注明出處。

施工安全計(jì)劃的一個(gè)關(guān)鍵因素是在危害發(fā)生之前能夠正確識別其所有發(fā)生的可能。BIM允許項(xiàng)目參與者直觀地評估現(xiàn)場條件和識別風(fēng)險(xiǎn),并提供給他們足夠的時(shí)間來制定適當(dāng)?shù)娘L(fēng)險(xiǎn)緩解計(jì)劃。

BIM技術(shù)的使用可以將工程安全問題更緊密的和建造計(jì)劃進(jìn)行連接,從而提高員工安全系數(shù)。這里提供了一個(gè)更加清晰的現(xiàn)場布局說明,同時(shí)提供了用于管理和對最新計(jì)劃和現(xiàn)場狀態(tài)信息可視化的方法。BIM的使用還鼓勵(lì)其他項(xiàng)目的合作伙伴,如設(shè)計(jì)師、分包商和安全專家,積極參與到風(fēng)險(xiǎn)評估和規(guī)劃之中。本文報(bào)道了美國奧本大學(xué)中,一個(gè)正在利用BIM技術(shù)進(jìn)行安全規(guī)劃和管理的建設(shè)項(xiàng)目。該項(xiàng)目是一個(gè)娛樂與健康中心,BIM模型和4D模擬被用來做以下安全計(jì)劃:1)塔吊管理;2)防墜落保護(hù);3)應(yīng)急預(yù)案。其中,4D模擬、3D漫游和3D渲染被用來標(biāo)識各種危險(xiǎn)以及同工人溝通安全管理計(jì)劃。

圖1:項(xiàng)目3D渲染圖

項(xiàng)目信息

業(yè)主:奧本大學(xué)設(shè)施運(yùn)維部門

項(xiàng)目經(jīng)理(工程組):Robins & Morton

建筑:360建筑

造價(jià):5000萬美元

規(guī)模:24萬平方英尺(約22300平方米)

交付系統(tǒng):CM代理處

開始日期:2011年10月

預(yù)計(jì)完成日期:2013年5月

防墜落保護(hù)計(jì)劃

前緣墜落防護(hù)計(jì)劃的編制是根據(jù)OSHA的子標(biāo)準(zhǔn):防墜物保護(hù)標(biāo)準(zhǔn)來完成的。兩種類型的墜落防護(hù)欄桿被建立模型:固定在第二層(混凝土結(jié)構(gòu))樓板的2X4木制防護(hù)欄和三層及其以上(鋼結(jié)構(gòu))的鋼索防護(hù)欄。并遵循高架樓板孔由膠合板覆蓋等OSHA中的規(guī)定的要求。

建立墜落防護(hù)欄桿構(gòu)件模型后,這些欄桿就被置于了結(jié)構(gòu)BIM模型中。在執(zhí)行此過程中,研究人員通過3D視圖能夠清楚地識別多個(gè)墜落風(fēng)險(xiǎn),而這些是通過傳統(tǒng)2D視頻不容易發(fā)現(xiàn)的。這些條件包括尚未建造的樓梯井和天窗等。因此墜落防護(hù)欄桿被放置在這些地方。這些建立模型的欄桿被分割為不同的區(qū)域和層,而分割出的這些部分被導(dǎo)入到Synchro?用來做4D模擬。4D模擬可以向承包商提供完整且詳細(xì)的信息,包括安裝或拆卸欄桿的地點(diǎn)和日期等。圖3顯示了一個(gè)典型的欄桿族和其安置在BIM模型中的位置。

圖3:防墜落保護(hù)規(guī)劃中的欄桿系統(tǒng)模型

應(yīng)急預(yù)案計(jì)劃

基于BIM的應(yīng)急預(yù)案包括五個(gè)子計(jì)劃,即施工人員的入口/出口;建筑設(shè)備和運(yùn)送路線;臨時(shí)設(shè)施和拖車位置;緊急車輛路線;惡劣天氣的預(yù)防措施。從BIM模型中生成的3D動(dòng)畫和渲染用來同工人溝通應(yīng)急預(yù)案計(jì)劃方案。圖4說明了部分應(yīng)急預(yù)案內(nèi)容。

圖4:應(yīng)急行動(dòng)計(jì)劃截圖:A)交通流方向;B)救護(hù)車到達(dá)路徑

結(jié)論

很多內(nèi)部和外部的規(guī)劃和實(shí)施用來驗(yàn)證這項(xiàng)研究的作用。該項(xiàng)目團(tuán)隊(duì)最近完成的第一個(gè)周期驗(yàn)證過程中,包含安全構(gòu)件的集成BIM模型和4D模擬展示給了一個(gè)BIM專家組。專家組給出的三個(gè)主要價(jià)值點(diǎn)是:1)改進(jìn)了施工人員關(guān)于安全計(jì)劃的相互溝通;2)提高了OSHA和業(yè)主之間的關(guān)于項(xiàng)目安全計(jì)劃的溝通;以及3)在施工前階段的與施工安全任務(wù)相關(guān)的后勤事務(wù)處理。

在接下來的幾個(gè)月中,項(xiàng)目團(tuán)隊(duì)將定期在安全會議中展示BIM模型和相關(guān)模擬,并將徹底評估其有效性。

(下頁為英文原文)

BIM for Construction Safety: A Case Study

By Alex Behringer and Salman Azhar

A crucial factor in construction safety planning is to properly identify all possible hazards before they occur. A building information model (BIM) allows construction stakeholders to visuallyassess jobsite conditions and recognize hazards, and it providesthem sufficient time to develop adequate hazard mitigation plans.

The utilization of BIM technology can result in improved occupational safety by connecting the safety issues more closely to constructionplanning. This provides a more illustrative site layout,while providing methods for managing and visualizing up-to-dateplans and site status information. The use of BIM also encouragesother project partners, such as designers, sub-contractors and safety specialists, to become actively involved in both risk assessmentand planning.This article reports an in-progress research project where BIMtechnology is utilized to perform safety planning and managementfor an ongoing construction project located at the campus of the Auburn University, in Auburn, Alabama. The project is a Recreation& Wellness Center. BIM models and 4D simulations are used to communicate the following safety plans: 1) crane management;2) fall protection; and 3) emergency response plans. 4D phasingsimulations, 3D walk-throughs and 3D renderings are utilized to identify various hazards and to communicate safety managementplans to the workers.

Figure 1. A 3D rendering of the project

Project details

Owner: Auburn University Facilities Division

Project Manager (Construction Team): Robins & Morton

Architect: 360 Architecture

Cost: $50,000,000

Size: 240,000 sq. ft.

Delivery System: CM Agency

Start Date: October 2011

Projected Substantial Completion Date: May 2013

The architecture firm, 360 Architecture, based in Kansas City,Missouri, developed the base BIM model of this project for communicationand visualization purposes. The research team acquiredthis model and enhanced it by adding missing designdetails and temporary safety features.

The following sections describe the BIM-based safety plansgenerated from the base BIM model.

The purpose of a crane management plan is to: 1) identify theswing radius of the crane to ensure its safe distance from powerlines and nearby structures; and 2) identify what trade/crew willbe utilizing the crane at a particular time. On this project, two lattice-boom crawling cranes are being utilized to pick and place thestructural members. The crane on the North side of the project is a110-ton Link-Belt 218 HYLAB unit and the crane on the South sideis a 250-ton Manitowoc Model 999 unit. FIGURE 2 illustrates thesteel truss placement in the crane management plan.

As depicted in this image, the colored masses (yellow, orangeand blue) are used to demonstrate the crane’s swing radius andzone of influence. The yellow mass communicates the possible extentof the crane’s swinging boom at any moment during a particularday. Collision detections can be utilized to generate weeklyreports of any non-steel installation activities scheduled to takeplace within the crane’s planned swing radius, according to theplacement dictated by the overall project schedule. The resultingreport can be used during a segment of the project’s periodic safetymeetings to mitigate unplanned risks due to the crane’s interactionwith construction personnel. Alternately, 4D simulations canbe utilized for safely planning construction activities.

Figure 2. The crane work zone and steel truss placement in the crane management plan.

Fall protection plan

The fall protection plan for leading edges is prepared accordingto OSHA Subpart M: Fall protection standards. Two types offall protection railings are modeled: 2×4 wooden railings on thesecond level (concrete structure) that are bolted to the concreteslab and 3/8” steel aircraft cable railings on the third and higherlevels of the project (steel structure). Holes in the elevated slabsare covered by plywood coverings and roped in caution tape, asrequired by OSHA.

After modeling the fall protection railing components, the railingsare placed on the structural BIM model. While performingthis process, the researchers were able to identify multiple fallingrisks through the 3D view that were not easily found within the 2Dplan view. These conditions included stairwells and skylights thatwere not yet constructed, so fall protection railing was placed atthese locations. The modeled railings are then segregated by zonesandlevels and the resulting railing sections were exported to Synchro? for developing 4D simulations. The 4D simulation providescomplete details to the contractor as to the location and date thatthe railings are to be installed or removed. FIGURE 3 depicts atypical railing family and its placement in the BIM model.

Figure 3. A model of the railing system for fall protection.

Emergency response plan

The BIM-based emergency response plan consisted of fivesub-plans, namely construction crew entrance/exit; constructionequipment and deliveries route; temporary facilities and job trailerlocations; emergency vehicle(s) route; and severe weather precautionsto orient workers with the construction site. The 3D walkthroughanimations and renderings were generated from the BIMmodels to communicate emergency response plan to the workers.FIGURE 4 illustrates parts of the emergency response plan.

Figure 4. Screenshots of the emergency action plan. A) Traffic flowdirections. B) Ambulance arrival path

Conclusion

Both internal and external validations were planned and implementedto verify the usefulness of this study. The project teamrecently completed the first cycle of the validation process, duringwhich the BIM model with integrated safety elements and 4D simulationswere shown to a focus group of BIM professionals. Theconslted members described the three main perceived benefits:1) improved communication of the safety plan among the constructionpersonnel; 2) improved communication of the project’ssafety plan between OSHA and the owner; and 3) logistical detailsof construction safety tasks being fully addressed in the preconstructionphase.

In the following months, the project team will demonstratethe BIM models and simulations in regular safety meetings andwill thoroughly evaluate their effectiveness.

微信公眾號:xuebim

關(guān)注建筑行業(yè)BIM發(fā)展、研究建筑新技術(shù),匯集建筑前沿信息!

← 微信掃一掃,關(guān)注我們+

相關(guān)知識

大連醫(yī)科大學(xué)本科雙語教學(xué)工作實(shí)施方案
為何大力發(fā)展BIM和綠色建筑
托兒所安全管理措施的研究
關(guān)于進(jìn)一步加強(qiáng)本市學(xué)校傳染病防控和食品安全管理工作的通知
重慶工會15個(gè)案例 入選全國工會重點(diǎn)工作創(chuàng)新案例
幼兒園安全衛(wèi)生管理案例分析及對策
【每日學(xué)習(xí)】《學(xué)校食品安全與營養(yǎng)健康管理規(guī)定》
15個(gè)臨床護(hù)理安全案例分析、吸取教訓(xùn)及整改措施
孕婦孕期體重管理重要性和措施.doc
職業(yè)健康安全管理體系的基本要素

網(wǎng)址: 案例學(xué)習(xí):美國奧本大學(xué)基于BIM的施工安全管理 http://m.u1s5d6.cn/newsview881996.html

推薦資訊