首頁 資訊 孕期微量元素家庭灰塵暴露和內(nèi)暴露特征及健康風(fēng)險評估

孕期微量元素家庭灰塵暴露和內(nèi)暴露特征及健康風(fēng)險評估

來源:泰然健康網(wǎng) 時間:2024年12月02日 09:24

摘要:孕婦妊娠期是胎兒生長發(fā)育的關(guān)鍵窗口期,期間母嬰容易受到微量元素的影響。室內(nèi)環(huán)境是孕期暴露微量元素的主要場所之一,同時個人生活習(xí)慣對微量元素暴露亦有重要影響。本研究采集孕婦尿液和對應(yīng)的家庭灰塵,并收集孕婦生活習(xí)慣等調(diào)查問卷,分析了孕婦尿液和家庭灰塵中V、Mn、Co、Se、Mo、Cr、Ni、As、Cd、Sb和Pb 等11種微量元素的濃度水平,評估孕婦尿液和室內(nèi)灰塵之間微量元素的相關(guān)性,探討孕婦微量元素暴露水平的潛在影響因素,并評估室內(nèi)灰塵中微量元素對孕婦的健康風(fēng)險。研究發(fā)現(xiàn),11種微量元素在家庭灰塵中的平均濃度介于1.95—159 μg·g?1,在孕婦尿液的平均濃度介于0.244—37.2 μg·L?1。與國內(nèi)外研究報道的平均濃度相比,家庭灰塵中的有毒微量元素Cr、Ni和As含量較高,孕婦尿液中有毒微量元素主要為As和Ni,必需微量元素Se的含量偏低。相關(guān)性分析和主成分分析結(jié)果發(fā)現(xiàn),家庭灰塵中Mn、Co和Mo,Se和Cd分別具有可能的相同來源;而孕婦尿液中Pb和Sb,Mo、Se、As和Co分別具有潛在相同的暴露源和途徑。人口學(xué)特征的多元回歸分析中,孕婦尿液必需微量元素Mn和有毒微量元素Cd、Pb的濃度增加與吸煙環(huán)境有關(guān),在妊娠期應(yīng)警惕生活環(huán)境如煙塵帶來的危害。健康風(fēng)險評估結(jié)果表明,家庭灰塵中必需微量元素Mn對孕婦健康可能存在低風(fēng)險,孕婦尿液中必需微量元素Mo和有毒微量元素Cr、As、Pb存在低風(fēng)險。根據(jù)本研究的分析結(jié)果,微量元素Mo、Mn、Cr、As和Pb對孕婦及胎兒的健康影響可能存在危害,需要考慮采取干預(yù)措施。

關(guān)鍵詞:微量元素 / 孕婦 / 尿液 / 家庭灰塵 / 暴露特征.

Abstract:Pregnancy period is a critical time window for fetal growth and development, during which the pregnant woman and fetus are vulnerable populations to exposure to trace elements. Indoor environment is one of the main places where maternal and infant exposure to trace elements, and living habits had significant effects on the exposure levels. In this study, pregnant women's urine and corresponding household indoor dust were collected, and pregnant women's living habits were collected by questionnaires. The levels of 11 trace elements (V, Mn, Co, Se, Mo, Cr, Ni, As, Cd, Sb, and Pb) in urine and household indoor dust were determined by inductively coupled plasma mass spectrometer. Pearson correlation analysis and principal component analysis were applied to evaluate the correlation of trace elements in pregnant women’s urine and those in indoor dust. Multiple linear regression model was applied to evaluate the potential influencing factors of trace element exposure in pregnant women. Besides, the health risks for pregnant women exposure to trace elements in indoor dust were assessed. The average concentrations of 11 trace element individuals ranged from 1.95 μg·g?1 to 159 μg·g?1 in household dust, and 0.244 μg·L?1 to 37.2 μg·L?1 in the urine of pregnant women, respectively. Compared with the average concentration in domestic and foreign studies, relative high levels of toxic trace elements like Cr, Ni, and As were observed in indoor dust. As and Ni were the primary toxic trace elements in urine of pregnant women, whilst the levels of essential trace element Se were relatively low. The results of correlation analysis and principal component analysis showed that Mn, Co and Mo, Se and Cd in household dust may have the same source, respectively. Pb and Sb, and Mo, Se, As and Co in urine of pregnant women may have the same exposure sources and pathways respectively. Multiple regression analysis of demographic characteristics showed that the increase of essential trace elements Mn and toxic trace elements Cd and Pb in urine of pregnant women was associated with smoking environment. The results of health risk assessment showed that the levels of essential trace elements Mo and toxic trace elements Cr, As and Pb in the urine of pregnant women suggested a low risk, and essential trace element Mn in household dust may pose a low risk to the health of pregnant women. According to the analysis results of this study, trace elements Mo, Mn, Cr, As and Pb may have harmful effects on the health of pregnant women and fetuses, and intervention measures should be considered.

圖 1 家庭灰塵微量元素相關(guān)性分析 (P<0.05)

Figure 1. Correlation analysis of trace elements in household dust (P<0.05)

圖 2 家庭灰塵主成分分析載量圖

Figure 2. Principal component analysis load map of household dust

圖 3 孕婦尿液微量元素相關(guān)性分析 (P<0.05)

Figure 3. Correlation analysis of trace elements in urine of pregnant women (P<0.05)

圖 4 孕婦尿液主成分分析載量圖

Figure 4. Load map of pregnant woman's urine by principal component analysis

表 1 孕婦基本信息(n=22)

Table 1. Basic information for pregnant women(n=22)

年齡(周歲)孕前BMI產(chǎn)次教育程度配偶教育程度 ≤30>30平均<18.5≥18.5平均初產(chǎn)婦經(jīng)產(chǎn)婦大專以下大專及以上大專以下大專及以上28±234±331±416.7±0.38421.6±1.9520.7±2.6054.5%45.5%18.2%81.8%18.2%81.8% 被動吸煙飲用桶裝水食用淡水魚食用海產(chǎn)品補(bǔ)充葉酸 是否是否每周1—3次每周4—6次每周1—3次每周4—6次懷孕前懷孕后 14.3%85.7%30.0%70.0%95.0%5.0%20.0%80.0%55.0%45.0%

表 2 國內(nèi)外不同城市家庭灰塵微量元素濃度比較(μg·g?1)

Table 2. Comparison of trace element concentration in household dust of different cities at home and abroad (μg·g?1)

省/市
Province/city采樣年份
Sampling date樣本量
Sample number釩
V錳
Mn鈷
Co硒
Se鉬
Mo鉻
Cr鎳
Ni砷
As鎘
Cd銻
Sb鉛
Pb文獻(xiàn)
Reference 廣州2020—20212223.94579.661.955.1110712515.62.218.78159本研究廣東省清遠(yuǎn)市2013—201478—————41.6——2.45—214[46]廣東省清遠(yuǎn)農(nóng)村2013—201478—————29.4——4.18—392[46]山西省太原市20197248.84448.19——13440.517.40.560—50.3[43]四川省成都市2014—201590—————82.752.6—2.37—123[23]安徽省合肥市20184118.0177———29.526.1—4.392.0095.4[45]安徽省農(nóng)村201012552.6—10.3——11438.94.46——349[44]加拿大201612515.02505.401.608.3092.060.013.011.036.0450[15]伊拉克202050—————289.5106—14.8—75.6[48]沙特阿拉伯201620—————46.732.2—0.540——[47]伊朗201619—————14357.1—5.31—209[49]   注:—表示無數(shù)據(jù)。表格中數(shù)據(jù)為國內(nèi)外不同城市家庭灰塵微量元素平均值.
  — Indicates no data. The data in the table are the average values of trace elements in household dust in different cities at home and abroad.

表 3 國內(nèi)外不同城市居民尿液微量元素濃度比較(μg·L?1)

Table 3. Comparison of urinary trace elements concentrations of residents in different cities at home and abroad (μg·L?1)

省/市
Province/city人口類別
Population category采樣年份
Sampling date樣本量
Sample number釩
V錳
Mn鈷
Co硒
Se鉬
Mo鉻
Cr鎳
Ni砷
As鎘
Cd銻
Sb鉛
Pb文獻(xiàn)
Reference 廣州孕婦2020—2021220.3392.680.49516.137.25.632.6426.60.5380.2445.24本研究中國武漢孕婦2014—20166750.960————1.12—20.00.630—2.54[54]中國武漢成人2014—2016226—0.530—34.0—0.240—40.91.09—0.920[30]廣東深圳成人2016—2017334—5.80—30.1—4.46—48.81.47—4.69[56]西班牙孕婦2004—20081346——0.52017.138.8—1.2734.40.2300.3501.14[57]加拿大孕婦2016290.1700.6300.63058.2—0.1300.9607.400.120—0.160[55]馬來西亞成人2017—2018817——————5.7382.30.470—1.53[60]美國成人2003—20149537——0.340—38.6——8.850.2400.060.50[58]伊朗成人201433———102——————16.7[59]   注:—表示無數(shù)據(jù)。表格中數(shù)據(jù)為國內(nèi)外不同城市居民尿液微量元素平均值.
  — Indicates no data. The data in the table are the average values of urine trace elements of residents in different cities at home and abroad.

表 4 尿液微量元素濃度影響因素的多元線性回歸模型結(jié)果

Table 4. Multivariate linear regression model results of factors influencing urinary trace element concentration

微量元素
Trace elements影響因素
Influence factor標(biāo)準(zhǔn)化系數(shù)
Standardized Coefficients95%置信區(qū)間95%
Confidence intervalR2調(diào)整R2
Adjust R2BetaSig下界
Lower bound上界
Upper bound Mn常量—0.050?3.640.0040.5660.499被動吸煙(是)0.8480.0010.9122.93——Co常量—0.302?1.173.440.7570.669教育程度(大專以下)?0.9620.003?4.06?1.05——被動吸煙(是)?0.5940.0053.05?0.672——食用海產(chǎn)品
(4—6次/周)0.6980.0200.4253.95——Se補(bǔ)充葉酸(懷孕前)0.9090.0001.082.69——常量—0.023?2.47?0.2120.5000.428補(bǔ)充葉酸(懷孕前)0.5520.0120.2451.68——Mo常量—0.183?1.225.780.5580.422產(chǎn)次(經(jīng)產(chǎn)婦)0.5740.0120.3072.04——配偶教育程度
(大專及以上)1.940.0041.847.66——被動吸煙(是)?1.540.004?6.79?1.63——食用海產(chǎn)品
(4—6次/周)?0.7860.024?4.69?0.396——Ni常量—0.0022.026.420.8420.771飲用桶裝水(是)?0.3730.032?1.55?0.086——Cd常量—0.638?2.191.400.7850.695Cd(灰塵)?0.8700.000?1.33?0.600——被動吸煙(是)1.240.0011.725.04——Pb常量—0.214?2.280.5540.7440.709被動吸煙(是)1.510.0002.725.48——   注:—表示無數(shù)據(jù)?!?Indicates no data.

表 5 健康風(fēng)險評估

Table 5. Health risk assessment

微量元素
Trace
elementRfD/
(μg·kg?1·d?1)RfC/
(μg·kg?1·d?1)家庭灰塵 均值±標(biāo)準(zhǔn)差(范圍)
Household dust Mean ± Standard deviation(range)孕婦尿液 均值±標(biāo)準(zhǔn)差(范圍)
Pregnant women urine Mean ± Standard deviation(range)HQ攝取
HQ ingestionHQ吸入
HQ inhalationHIDI/
(μg·kg-1BW·d?1)HQ V5.040.1(2.16×10?3±9.39×10?4)
(7.55×10?4—4.01×10?3)(1.09×10?1±4.73×10?2)
(3.81×10?2—2.02×10?1)(1.11×10?1±
4.83×10?2)0.0470±0.0563
(nd.—0.252)0.00933±0.0112
(nd.—0.0500)Mn1400.05(1.45×10?3±6.92×10?4)
(5.63×10?4—3.55×10?3)4.07±1.94
(1.58—9.94)4.07±1.945.40±4.73
(nd.—16.3)0.0386±0.0338
(nd.—0.117)Co0.30.006(1.42×10?2±6.42×10?3)
(5.56×10?3—3.47×10?2)(7.11×10?1±3.21×10?1)
(2.78×10?1—1.74)(7.26×10?1±
3.28×10?1)0.0695±0.0726
(nd.—0.262)0.232±0.242
(nd.—0.872)Se520(1.78×10?4±6.83×10?5)
(7.35×10?5—3.24×10?4)(4.42×10?5±1.71×10?5 )
(1.71×10?5—8.10×10?5)(2.21×10?4±
8.54×10?5)1.01±0.854
(nd.—28.0)0.261±0.317
(nd.—15.0)Mo52(4.53×10?4±3.57×10?4)
(1.62×10?4—1.77×10?3)(1.13×10?3±8.93×10?4)
(4.04×10?4—4.42×10?3)(1.59×10?3±
1.25×10?3)10.7±9.51
(0.343—35.4)2.14±1.90
(0.0685—7.07)Cr30.1(1.81×10?4±1.55×10?4)
(5.74×10?5—5.84×10?4)(5.43×10?3±4.65×10?3)
(1.72×10?3—1.75×10?2)(5.61×10?3±
4.80×10?3)3.23±2.64
(nd.—7.50)1.08±0.881
(nd.—2.50)Ni200.09(2.75×10?3±1.96×10?3 )
(6.89×10?4—9.09×10?3)(6.11×10?1±4.35×10?1)
(1.53×10?1—2.02)(6.14×10?1±
4.37×10?1)0.698±0.502
(nd.—2.14)0.0349±0.021
(nd.—0.107)As0.30.015(2.27×10?2±2.25×10?2)
(7.46×10?3—1.10×10?1)(4.55×10?1±4.51×10?1)
(1.49×10?1—2.20)(4.77×10?1±
4.73×10?1)18.4±14.3
(2.83—52.6)44.5±27.1
(9.43—102)Cd0.10.01(9.63×10?3±7.48×10?3)
(3.56×10?3—3.32×10?2)(9.63×10?2±7.48×10?2)
(3.56×10?2—3.32×10?1)(1.06×10?1±
8.22×10?2)5.44±3.31
(0.303—11.1)0.544±0.331
(0.0303—1.11)Sb0.40.3(9.77×10?3±4.63×10?3)
(2.86×10?3—2.08×10?2)(1.30×10?2±6.18×10?3)
(3.82×10?3—2.78×10?2)(2.28×10?2±
1.08×10?2)0.0668±0.225
(nd.—1.09)0.167±0.561
(nd.—2.72)Pb3.53.52(2.01×10?2±1.92×10?2)
(2.67×10?4—7.15×10?2)(2.00×10?2±1.91×10?2)
(2.65×10?4—7.10×10?2)(4.00×10?2±
3.83×10?2)46.0±18.3
(14.5—83.5)13.2±7.50
(4.14—23.9)   注:nd.,未檢出。nd.,not detected. [1]楊雅茹, 鐘瑤, 李帥東, 等. 水產(chǎn)品中重金屬對人體的危害研究進(jìn)展 [J]. 農(nóng)業(yè)技術(shù)與裝備, 2020(10): 55-56. doi: 10.3969/j.issn.1673-887X.2020.10.025

YANG Y R, ZHONG Y, LI S D, et al. Research progress on the harm of heavy metals to human body in aquatic products [J]. Agricultural Technology & Equipment, 2020(10): 55-56(in Chinese). doi: 10.3969/j.issn.1673-887X.2020.10.025

[2]MAROUF B H. Association between serum heavy metals level and cancer incidence in darbandikhan and Kalar Area, Kurdistan Region, Iraq [J]. Nigerian Journal of Clinical Practice, 2018, 21(6): 766-771. doi: 10.4103/njcp.njcp_384_16 [3]ROMANIUK А, LYNDIN M, SIKORA V, et al. Heavy metals effect on breast cancer progression [J]. Journal of Occupational Medicine and Toxicology, 2017, 12: 32. doi: 10.1186/s12995-017-0178-1 [4]CICERO C E, MOSTILE G, VASTA R, et al. Metals and neurodegenerative diseases. A systematic review [J]. Environmental Research, 2017, 159: 82-94. doi: 10.1016/j.envres.2017.07.048 [5]TSUJI M, SHIBATA E, MOROKUMA S, et al. The association between whole blood concentrations of heavy metals in pregnant women and premature births: The Japan Environment and Children’s Study (JECS) [J]. Environmental Research, 2018, 166: 562-569. doi: 10.1016/j.envres.2018.06.025 [6]MISTRY H D, WILLIAMS P J. The importance of antioxidant micronutrients in pregnancy [J]. Oxidative Medicine and Cellular Longevity, 2011, 2011: 841749. [7]BOCCA B, RUGGIERI F, PINO A, et al. Human biomonitoring to evaluate exposure to toxic and essential trace elements during pregnancy. Part A. concentrations in maternal blood, urine and cord blood [J]. Environmental Research, 2019, 177: 108599. doi: 10.1016/j.envres.2019.108599 [8]BOUCHER O, MUCKLE G, JACOBSON J L, et al. Domain-specific effects of prenatal exposure to PCBs, mercury, and lead on infant cognition: Results from the Environmental Contaminants and Child Development Study in Nunavik [J]. Environmental Health Perspectives, 2014, 122(3): 310-316. doi: 10.1289/ehp.1206323 [9]CABRERA-RODRGUEZ R, LUZARDO O P, GONZLEZ-ANTUA A, et al. Occurrence of 44 elements in human cord blood and their association with growth indicators in newborns [J]. Environment International, 2018, 116: 43-51. doi: 10.1016/j.envint.2018.03.048 [10]BANK-NIELSEN P I, LONG M H, BONEFELD-JRGENSEN E C. Pregnant Inuit women’s exposure to metals and association with fetal growth outcomes: ACCEPT 2010—2015 [J]. International Journal of Environmental Research and Public Health, 2019, 16(7): 1171. doi: 10.3390/ijerph16071171 [11]VIGEH M, YOKOYAMA K, RAMEZANZADEH F, et al. Blood Manganese concentrations and intrauterine growth restriction [J]. Reproductive Toxicology, 2008, 25(2): 219-223. doi: 10.1016/j.reprotox.2007.11.011 [12]?ZEL ?, OZYER S, AYKUT O, et al. Maternal second trimester blood levels of selected heavy metals in pregnancies complicated with neural tube defects[J]. The Journal of Maternal-Fetal & Neonatal Medicine: the Official Journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians, 2019, 32(15): 2547-2553. [13]CUI Y B, BAI L, LI C H, et al. Assessment of heavy metal contamination levels and health risks in environmental media in the northeast region [J]. Sustainable Cities and Society, 2022, 80: 103796. doi: 10.1016/j.scs.2022.103796 [14]GUPTA S, GRAHAM D W, SREEKRISHNAN T R, et al. Heavy metal and antibiotic resistance in four Indian and UK rivers with different levels and types of water pollution [J]. Science of the Total Environment, 2023, 857: 159059. doi: 10.1016/j.scitotenv.2022.159059 [15]DINGLE J H, KOHL L, KHAN N, et al. Sources and composition of metals in indoor house dust in a mid-size Canadian city [J]. Environmental Pollution, 2021, 289: 117867. doi: 10.1016/j.envpol.2021.117867 [16]萬千, 趙靜, 韋旭, 等. 電子廢棄物拆解車間灰塵中重金屬污染特征及職業(yè)人群健康風(fēng)險評價 [J]. 環(huán)境化學(xué), 2022, 41(3): 883-892. doi: 10.7524/j.issn.0254-6108.2020110901

WAN Q, ZHAO J, WEI X, et al. Pollution characteristics of heavy metals in the dust from e-waste dismantling workshop and health risk assessment of occupational population [J]. Environmental Chemistry, 2022, 41(3): 883-892(in Chinese). doi: 10.7524/j.issn.0254-6108.2020110901

[17]BARRIO-PARRA F, de MIGUEL E, LZARO-NAVAS S, et al. Indoor dust metal loadings: A human health risk assessment [J]. Exposure and Health, 2018, 10(1): 41-50. doi: 10.1007/s12403-017-0244-z [18]OLUJIMI O, STEINER O, GOESSLER W. Pollution indexing and health risk assessments of trace elements in indoor dusts from classrooms, living rooms and offices in Ogun State, Nigeria [J]. Journal of African Earth Sciences, 2015, 101: 396-404. doi: 10.1016/j.jafrearsci.2014.10.007 [19]DOYI I N Y, ISLEY C F, SOLTANI N S, et al. Human exposure and risk associated with trace element concentrations in indoor dust from Australian homes[J]. Environment International, 2019, 133(Pt A): 105125. [20]NWANAJI-ENWEREM J C, ALLEN J G, BEAMER P I. Another invisible enemy indoors: COVID-19, human health, the home, and United States indoor air policy [J]. Journal of Exposure Science & Environmental Epidemiology, 2020, 30(5): 773-775. [21]張舒婷, 李曉燕. 城市室內(nèi)灰塵重金屬的水平及來源 [J]. 環(huán)境化學(xué), 2014, 33(7): 1201-1207. doi: 10.7524/j.issn.0254-6108.2014.07.024

ZHANG S T, LI X Y. Concentrations and sources of heavy metals in indoor dust of cities [J]. Environmental Chemistry, 2014, 33(7): 1201-1207(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.07.024

[22]HU J, WU C S, ZHENG T Z, et al. Critical windows for associations between Manganese exposure during pregnancy and size at birth: A longitudinal cohort study in Wuhan, China [J]. Environmental Health Perspectives, 2018, 126(12): 127006. doi: 10.1289/EHP3423 [23]CHENG Z, CHEN L J, LI H H, et al. Characteristics and health risk assessment of heavy metals exposure via household dust from urban area in Chengdu, China [J]. Science of the Total Environment, 2018, 619/620: 621-629. doi: 10.1016/j.scitotenv.2017.11.144 [24]SHARMA B, HANDIQUE S, JYETHI D S. Elemental composition of rural household dust in Brahmaputra fluvial plain: Insights from SEM-EDS, receptor model, and risk assessment[J]. Environmental Geochemistry and Health, 2022: 1-14. [25]ZHANG X, CUI X Y, LIN C Y, et al. Reference levels and relationships of nine elements in first-spot morning urine and 24-h urine from 210 Chinese children [J]. International Journal of Hygiene and Environmental Health, 2017, 220(2): 227-234. doi: 10.1016/j.ijheh.2016.10.013 [26]CUI Y J, ZHONG Q, HU M J, et al. Human biomonitoring of eight trace elements in urine of residents living in rural areas along the Yangtze River, China [J]. Environmental Science and Pollution Research, 2017, 24(36): 27963-27973. doi: 10.1007/s11356-017-0414-3 [27]dos SANTOS M, FLORES SOARES M C, MARTINS BAISCH P R, et al. Biomonitoring of trace elements in urine samples of children from a coal-mining region [J]. Chemosphere, 2018, 197: 622-626. doi: 10.1016/j.chemosphere.2018.01.082 [28]JUNAID M, HASHMI M Z, MALIK R N, et al. Toxicity and oxidative stress induced by chromium in workers exposed from different occupational settings around the globe: A review [J]. Environmental Science and Pollution Research, 2016, 23(20): 20151-20167. doi: 10.1007/s11356-016-7463-x [29]SHI H Z, WANG J J, YUAN J, et al. Biomonitoring human urinary levels of 26 metal elements in multi-race coexistence region of Xinjiang, China [J]. Science of the Total Environment, 2020, 711: 134752. doi: 10.1016/j.scitotenv.2019.134752 [30]ZENG H L, LIU C W B, LU J, et al. Analysis of urinary trace element levels in general population of Wuhan in central China [J]. Environmental Science and Pollution Research, 2019, 26(27): 27823-27831. doi: 10.1007/s11356-019-05973-7 [31]SUN X J, JIANG Y Q, XIA W, et al. Association between prenatal nickel exposure and preterm low birth weight: Possible effect of selenium [J]. Environmental Science and Pollution Research, 2018, 25(26): 25888-25895. doi: 10.1007/s11356-018-2622-x [32]WAI K M, UMEZAKI M, KOSAKA S, et al. Impact of prenatal heavy metal exposure on newborn leucocyte telomere length: A birth-cohort study [J]. Environmental Pollution, 2018, 243: 1414-1421. doi: 10.1016/j.envpol.2018.09.090 [33]AWASTHI A K, WANG M M, AWASTHI M K, et al. Environmental pollution and human body burden from improper recycling of e-waste in China: A short-review [J]. Environmental Pollution, 2018, 243: 1310-1316. doi: 10.1016/j.envpol.2018.08.037 [34]GU Y G, GAO Y P, LIN Q. Contamination, bioaccessibility and human health risk of heavy metals in exposed-lawn soils from 28 urban parks in Southern China’s largest city, Guangzhou [J]. Applied Geochemistry, 2016, 67: 52-58. doi: 10.1016/j.apgeochem.2016.02.004 [35]鄒夢遙, 周遺品, 鄧金川, 等. 某鉛鋅礦周邊地區(qū)室內(nèi)灰塵中重金屬的生態(tài)風(fēng)險評價 [J]. 安徽農(nóng)學(xué)通報, 2015, 21(16): 83-87. doi: 10.3969/j.issn.1007-7731.2015.16.041

ZOU M Y, ZHOU Y P, DENG J C, et al. The ecological risk assessment of heavy metals in household dust from a lead-zinc core mine [J]. Anhui Agricultural Science Bulletin, 2015, 21(16): 83-87(in Chinese). doi: 10.3969/j.issn.1007-7731.2015.16.041

[36]ISLEY C F, FRY K L, LIU X C, et al. International analysis of sources and human health risk associated with trace metal contaminants in residential indoor dust [J]. Environmental Science & Technology, 2022, 56(2): 1053-1068. [37]LEE I, PLMKE C, RINGBECK B, et al. Urinary concentrations of major phthalate and alternative plasticizer metabolites in children of Thailand, Indonesia, and Saudi Arabia, and associated risks [J]. Environmental Science & Technology, 2021, 55(24): 16526-16537. [38]AL LASER M, EL-YAZIGI A, CROFT S L. Pharmacokinetics of antimony in patients treated with sodium stibogluconate for cutaneous leishmaniasis [J]. Pharmaceutical Research, 1995, 12(1): 113-116. doi: 10.1023/A:1016251023427 [39]PANE E F, McDONALD M D, CURRY H N, et al. Hydromineral balance in the marine gulf toadfish (Opsanus beta) exposed to waterborne or infused nickel [J]. Aquatic Toxicology, 2006, 80(1): 70-81. doi: 10.1016/j.aquatox.2006.07.015 [40]WERNER E, ROTH P, HEINRICHS U, et al. Internal biokinetic behaviour of molybdenum in humans studied with stable isotopes as tracers [J]. Isotopes in Environmental and Health Studies, 2000, 36(2): 123-132. doi: 10.1080/10256010008032938 [41]GREGUS Z, KLAASSEN C D. Disposition of metals in rats: A comparative study of fecal, urinary, and biliary excretion and tissue distribution of eighteen metals [J]. Toxicology and Applied Pharmacology, 1986, 85(1): 24-38. doi: 10.1016/0041-008X(86)90384-4 [42]AL-BAYATI M A, RAABE O G, GIRI S N, et al. Distribution of vanadate in the rat following subcutaneous and oral routes of administration [J]. Journal of the American College of Toxicology, 1991, 10(2): 233-241. doi: 10.3109/10915819109078633 [43]黃浩, 徐子琪, 嚴(yán)俊霞, 等. 太原市城鄉(xiāng)居民區(qū)采暖季室內(nèi)灰塵中重金屬的污染特征及其生態(tài)風(fēng)險評價 [J]. 環(huán)境科學(xué), 2021, 42(5): 2143-2152. doi: 10.13227/j.hjkx.202008045

HUANG H, XU Z Q, YAN J X, et al. Characteristics of heavy metal pollution and ecological risk evaluation of indoor dust from urban and rural areas in Taiyuan city during the heating season [J]. Environmental Science, 2021, 42(5): 2143-2152(in Chinese). doi: 10.13227/j.hjkx.202008045

[44]LIN Y S, FANG F M, WANG F, et al. Pollution distribution and health risk assessment of heavy metals in indoor dust in Anhui rural, China [J]. Environmental Monitoring and Assessment, 2015, 187(9): 565. doi: 10.1007/s10661-015-4763-4 [45]ZHOU L, LIU G J, SHEN M C, et al. Characteristics and health risk assessment of heavy metals in indoor dust from different functional areas in Hefei, China [J]. Environmental Pollution, 2019, 251: 839-849. doi: 10.1016/j.envpol.2019.05.058 [46]HE C T, ZHENG X B, YAN X, et al. Organic contaminants and heavy metals in indoor dust from e-waste recycling, rural, and urban areas in South China: Spatial characteristics and implications for human exposure [J]. Ecotoxicology and Environmental Safety, 2017, 140: 109-115. doi: 10.1016/j.ecoenv.2017.02.041 [47]SALEM ALI ALBAR H M, ALI N, ALI MUSSTJAB AKBER SHAH EQANI S, et al. Trace metals in different socioeconomic indoor residential settings, implications for human health via dust exposure [J]. Ecotoxicology and Environmental Safety, 2020, 189: 109927. doi: 10.1016/j.ecoenv.2019.109927 [48]AL-DULAIMI E, SHARTOOH S, AL-HEETY E. Concentration, distribution, and potential sources of heavy metals in households dust in Al-fallujah, Iraq [J]. Iraqi Geological Journal, 2021, 54(2F): 120-130. doi: 10.46717/igj.54.2F.11ms-2021-12-28 [49]HASHEMI S E, FAZLZADEH M, AHMADI E, et al. Occurrence, potential sources, in vitro bioaccessibility and health risk assessment of heavy metal in indoor dust from different microenvironment of Bushehr, Iran [J]. Environmental Geochemistry and Health, 2020, 42(11): 3641-3658. doi: 10.1007/s10653-020-00598-z [50]WANG X, WANG B, XIAO L L, et al. Sources of 24-h personal exposure to PM2.5-bound metals: Results from a panel study in Wuhan, China [J]. Environmental Science and Pollution Research, 2021, 28(22): 27555-27564. doi: 10.1007/s11356-021-12386-y [51]GURBANOV A G, BOGATIKOV O A, VINOKUROV S F, et al. Geochemical evaluation of environmental conditions in the area of activity of the Tyrnyauz Tungsten–Molybdenum Plant (Kabardino-Balkaria, North Caucasus): Sources of environment contamination, impact upon neighboring areas, and ways for recovery [J]. Doklady Earth Sciences, 2015, 464(1): 967-971. doi: 10.1134/S1028334X15090172 [52]ZHU Y L, HUANG W, LIU Z L, et al. Application of supramolecular nano-material adsorbent in the treatment of heavy metal pollution in acid selenium-rich soils in South China [J]. Integrated Ferroelectrics, 2021, 217(1): 69-81. doi: 10.1080/10584587.2021.1911297 [53]BARTKOWIAK A, LEMANOWICZ J, BREZA-BORUTA B. Evaluation of the content of Zn, Cu, Ni and Pb as well as the enzymatic activity of forest soils exposed to the effect of road traffic pollution [J]. Environmental Science and Pollution Research, 2017, 24(30): 23893-23902. doi: 10.1007/s11356-017-0013-3 [54]SUN X J, LIU W Y, ZHANG B, et al. Maternal heavy metal exposure, thyroid hormones, and birth outcomes: A prospective cohort study [J]. The Journal of Clinical Endocrinology & Metabolism, 2019, 104(11): 5043-5052. [55]CARON-BEAUDOIN , BOUCHARD M, WENDLING G, et al. Urinary and hair concentrations of trace metals in pregnant women from Northeastern British Columbia, Canada: A pilot study [J]. Journal of Exposure Science & Environmental Epidemiology, 2019, 29(5): 613-623. [56]YANG D F, LIU Y L, LIU S, et al. Exposure to heavy metals and its association with DNA oxidative damage in municipal waste incinerator workers in Shenzhen, China [J]. Chemosphere, 2020, 250: 126289. doi: 10.1016/j.chemosphere.2020.126289 [57]LOZANO M, MURCIA M, SOLER-BLASCO R, et al. Exposure to metals and metalloids among pregnant women from Spain: Levels and associated factors [J]. Chemosphere, 2022, 286: 131809. doi: 10.1016/j.chemosphere.2021.131809 [58]WANG X, MUKHERJEE B, PARK S K. Associations of cumulative exposure to heavy metal mixtures with obesity and its comorbidities among U. S. adults in NHANES 2003–2014 [J]. Environment International, 2018, 121: 683-694. doi: 10.1016/j.envint.2018.09.035 [59]SHAHBAZIAN H, ABSALAN A, JALALI M T, et al. Comparison of zinc, copper, selenium, magnesium, aluminium and lead blood concentrations in end-stage renal disease patients and healthy volunteers in Ahvaz, southwest of Iran [J]. Russian Open Medical Journal, 2018, 7(1): e0105. doi: 10.15275/rusomj.2018.0105 [60]MOHAMMAD SHAM N, ANUAL Z F, SHAHARUDIN R. GIS based interpolation method to urinary metal concentrations in Malaysia [J]. Food and Chemical Toxicology:an International Journal Published for the British Industrial Biological Research Association, 2022, 163: 112949. doi: 10.1016/j.fct.2022.112949 [61]GRIEGER J A, GRZESKOWIAK L E, WILSON R L, et al. Maternal selenium, copper and zinc concentrations in early pregnancy, and the association with fertility [J]. Nutrients, 2019, 11(7): 1609. doi: 10.3390/nu11071609 [62]JEANJEAN M, GOIX S, DRON J, et al. Influence of environmental and dietary exposures on metals accumulation among the residents of a major industrial harbour (Fos-sur-Mer, France) [J]. Journal of Trace Elements in Medicine and Biology, 2022, 73: 127021. doi: 10.1016/j.jtemb.2022.127021 [63]ZHAO H, TANG J, ZHU Q H, et al. Associations of prenatal heavy metals exposure with placental characteristics and birth weight in Hangzhou Birth Cohort: Multi-pollutant models based on elastic net regression [J]. Science of the Total Environment, 2020, 742: 140613. doi: 10.1016/j.scitotenv.2020.140613 [64]MASSADEH A M, AL-SAFI S. Analysis of cadmium and lead: Their immunosuppressive effects and distribution in various organs of mice [J]. Biological Trace Element Research, 2005, 108(1/2/3): 279-286. [65]ZHUO H H, WU Y L, LIU Y B, et al. Source, distribution and potential risk of antimony in water and sediments of Danjiangkou Reservoir: Impact from dam [J]. International Journal of Environmental Research and Public Health, 2022, 19(19): 12367. doi: 10.3390/ijerph191912367 [66]孫慧, 畢如田, 郭穎, 等. 廣東省土壤重金屬溯源及污染源解析 [J]. 環(huán)境科學(xué)學(xué)報, 2018, 38(2): 704-714. doi: 10.13671/j.hjkxxb.2017.0351

SUN H, BI R T, GUO Y, et al. Source apportionment analysis of trace metal contamination in soils of Guangdong Province, China [J]. Acta Scientiae Circumstantiae, 2018, 38(2): 704-714(in Chinese). doi: 10.13671/j.hjkxxb.2017.0351

[67]HAYS S M, MACEY K, NONG A, et al. Biomonitoring equivalents for selenium [J]. Regulatory Toxicology and Pharmacology, 2014, 70(1): 333-339. doi: 10.1016/j.yrtph.2014.07.017 [68]ASHRAP P, WATKINS D J, MUKHERJEE B, et al. Predictors of urinary and blood Metal(loid) concentrations among pregnant women in Northern Puerto Rico [J]. Environmental Research, 2020, 183: 109178. doi: 10.1016/j.envres.2020.109178 [69]WANG X, QI L, PENG Y, et al. Urinary concentrations of environmental metals and associating factors in pregnant women [J]. Environmental Science and Pollution Research, 2019, 26(13): 13464-13475. doi: 10.1007/s11356-019-04731-z [70]de MATOS A R, FARIA M C S, FREIRE B M, et al. Determination of 14 trace elements in blood, serum and urine after environmental disaster in the Doce River Basin: Relationship between mining waste and metal concentration in the population [J]. Journal of Trace Elements in Medicine and Biology, 2022, 70: 126920. doi: 10.1016/j.jtemb.2021.126920 [71]EGUCHI A, YANASE K, YAMAMOTO M, et al. The relationship of maternal PCB, toxic, and essential trace element exposure levels with birth weight and head circumference in Chiba, Japan [J]. Environmental Science and Pollution Research, 2019, 26(15): 15677-15684. doi: 10.1007/s11356-019-05009-0 [72]PARK J, KIM J, KIM E, et al. Association between prenatal cadmium exposure and cord blood DNA methylation [J]. Environmental Research, 2022, 212: 113268. doi: 10.1016/j.envres.2022.113268 [73]DEMIR N, BA?ARANO?LU M, HUYUT Z, et al. The relationship between mother and infant plasma trace element and heavy metal levels and the risk of neural tube defect in infants [J]. The Journal of Maternal-Fetal & Neonatal Medicine, 2019, 32(9): 1433-1440. [74]DANIALI S S, YAZDI M, HEIDARI-BENI M, et al. Birth size outcomes in relation to maternal blood levels of some essential and toxic elements [J]. Biological Trace Element Research, 2023, 201(1): 4-13. doi: 10.1007/s12011-022-03121-w [75]BARAQUONI N A, QOUTA S R, VNSK M, et al. It takes time to unravel the ecology of war in Gaza, Palestine: Long-term changes in maternal, newborn and toddlers' heavy metal loads, and infant and toddler developmental milestones in the aftermath of the 2014 military attacks [J]. International Journal of Environmental Research and Public Health, 2020, 17(18): 6698. doi: 10.3390/ijerph17186698 [76]LIU C Q, HUANG L L, HUANG S Z, et al. Association of both prenatal and early childhood multiple metals exposure with neurodevelopment in infant: A prospective cohort study [J]. Environmental Research, 2022, 205: 112450. doi: 10.1016/j.envres.2021.112450 [77]LI Z J, LIANG C M, XIA X, et al. Association between maternal and umbilical cord serum cobalt concentration during pregnancy and the risk of preterm birth: The Ma'anshan birth cohort (MABC) study [J]. Chemosphere, 2019, 218: 487-492. doi: 10.1016/j.chemosphere.2018.11.122 [78]KANTOLA M, PURKUNEN R, KRGER P, et al. Selenium in pregnancy: Is selenium an active defective ion against environmental chemical stress? [J]. Environmental Research, 2004, 96(1): 51-61. doi: 10.1016/j.envres.2004.03.003 [79]HAWKES W C, ALKAN Z, LANG K, et al. Plasma selenium decrease during pregnancy is associated with glucose intolerance [J]. Biological Trace Element Research, 2004, 100(1): 19-29. doi: 10.1385/BTER:100:1:019 [80]MISTRY H D, KURLAK L O, YOUNG S D, et al. Maternal selenium, copper and zinc concentrations in pregnancy associated with small-for-gestational-age infants [J]. Maternal & Child Nutrition, 2014, 10(3): 327-334. [81]LI Y W, PI L, HU W L, et al. Concentrations and health risk assessment of metal(loid)s in indoor dust from two typical cities of China [J]. Environmental Science and Pollution Research, 2016, 23(9): 9082-9092. doi: 10.1007/s11356-016-6045-2 [82]LIN Y S, FANG F M, WU J Y, et al. Indoor and outdoor levels, sources, and health risk assessment of mercury in dusts from a coal-industry city of China [J]. Human and Ecological Risk Assessment:an International Journal, 2017, 23(5): 1028-1040. doi: 10.1080/10807039.2017.1296759 [83]ZHONG Z J, LI Q, GUO C S, et al. Urinary heavy metals in residents from a typical city in South China: Human exposure and health risks [J]. Environmental Science and Pollution Research, 2022, 29(11): 15827-15837. doi: 10.1007/s11356-021-16954-0

相關(guān)知識

環(huán)境污染物聯(lián)合暴露的人體健康累積風(fēng)險評估研究進(jìn)展
健康風(fēng)險評估論文
孕期環(huán)境危險因素暴露的健康效應(yīng)研究
【海豚健康云】健康風(fēng)險評估和健康危險因素分析系統(tǒng)
江桂斌、宋茂勇等:環(huán)境暴露與健康效應(yīng)
一文總結(jié)|農(nóng)藥健康風(fēng)險評估關(guān)鍵技術(shù)點和注意事項
健康風(fēng)險評估(精選5篇)
化妝品安全風(fēng)險評估
黃存瑞教授最新研究揭示孕期極端溫度暴露對不同類型早產(chǎn)風(fēng)險的影響
地下水砷污染健康風(fēng)險評估研究

網(wǎng)址: 孕期微量元素家庭灰塵暴露和內(nèi)暴露特征及健康風(fēng)險評估 http://m.u1s5d6.cn/newsview206236.html

推薦資訊