首頁(yè) 資訊 Absorption and metabolism of fructose and its relationship with human health

Absorption and metabolism of fructose and its relationship with human health

來(lái)源:泰然健康網(wǎng) 時(shí)間:2025年06月01日 22:52

摘要: 果糖是一種單糖,由于其甜度大于葡萄糖和蔗糖,近年來(lái)高果糖濃度的果葡糖漿被廣泛用于食品工業(yè)中。因此,近年來(lái)果糖對(duì)人體健康的影響備受關(guān)注。本研究總結(jié)了果糖的主要食物來(lái)源、吸收和代謝,與相關(guān)疾病之間的關(guān)系,以及推薦攝入量。果糖和葡萄糖不同,它的主要代謝器官是肝,除部分代謝為葡萄糖外,主要代謝為脂肪酸,后者進(jìn)一步合成甘油三酯。肝中甘油三酯沉積會(huì)增加脂肪肝的發(fā)病風(fēng)險(xiǎn)和胰島素抵抗,其余甘油三酯可被轉(zhuǎn)運(yùn)至其他組織器官,增加胰島素抵抗、肥胖和心血管系統(tǒng)疾病的發(fā)病風(fēng)險(xiǎn)。世界衛(wèi)生組織建議在整個(gè)生命歷程中減少游離糖攝入量,成人和兒童游離糖攝入量應(yīng)減至攝入總能量的10%以?xún)?nèi)。如能進(jìn)一步將其降至低于攝入總能量的5%,則對(duì)健康有更多益處。

Summary: Fructose is a monosaccharide, which is greatly sweeter than glucose and sucrose. In recent years, high fructose corn syrup has been widely used in beverages and food industry globally. However, the effect of fructose on human health has received much attention in current years. In this review, we mainly discussed the food source, absorption and metabolism of fructose, relationship between fructose and metabolic disorders, and recommendation intake of total sugar. Crystalline fructose is dried, ground, and highly pure. Fructose is found in most fruits and vegetables either as a monosaccharide or as a unit of sucrose. The ratio of fructose to glucose in most natural food is approximately 1∶1. Fructose has the lowest glycemic index of all natural sugars. High-fructose corn syrup (HFCS) is a mixture of fructose and glucose, which is widely used in food industry, added into soft drinks and baked foods for its palatability and good taste. HFCS-42, HFCS-55 and HFCS-90 are three kinds of HFCS, and the number for each HFCS represents the percentage of fructose in the syrup. Free fructose is absorbed directly by intestine via facilitated transport involving GULT5 transport proteins. Unabsorbed fructose in intestine can cause abdominal symptoms such as diarrhea and abdominal pain. When fructose exists in a 1∶1 ratio with glucose, it can be absorbed mostly. Unlike glucose, fructose can be metabolized in liver, where it can be partially converted into glucose, and mostly metabolized to fatty acid, and the latter can be synthesized into triacylglycerol. Fructose is firstly metabolized into fructose 1-phosphate by fructose to kinase referred to as fructolysis. Unlike glycolysis, in fructolysis the triose glyceraldehyde lacks a phosphate group. Fructose 1-phosphate then is hydrolyzed by aldose B to form dihydroxy acetone phosphate and glyceraldehyde. DHAP can either be isomerized to glyceraldehyde 3-phosphate by triosephosphate isomersae or reduced to glycerol 3-phosphate by glycerol 3-phosphate dehydrogenase. The glyceraldehyde produced may also be converted to glyceraldehyde 3-phosphate by glyceraldehyde kinase or further converted to glycerol 3-phosphate by glycerol 3-phosphate dehydrogenase. The metabolism of fructose yields intermediates in the gluconeogenic pathway leading to glycogen synthesis as well as fatty acid and triglyceride synthesis. Triacylglycerol can be accumulated in liver to cause non-alcohol fatty liver and insulin resistance in liver. Triglycerides are incorporated into very-low-density lipoproteins, which are released from the liver destined toward peripheral tissues for storage in both fat and muscle cells. Then, triacylglycerol can also be transported to other organs and tissues to increase the risk of insulin resistance, obesity and cardiovascular disease. Based on the available evidence,WHO recommends a reduced intake of free sugars throughout the life to limit free sugars intake to less than 10% of total energy intake. WHO suggests a further reduction of the intake of free sugars to below 5% of total energy intake. In conclusion, there exits a relationship between fructose and non-alcohol fatty liver, obesity, cardiovascular disease and insulin resistance. Therefore, fructose should be applied in an appropriate way or it will exert a detrimental influence on health. It is reasonable to pay more attention on reducing fructose intake.

目前我國(guó)的超重和肥胖人群已高達(dá)總?cè)丝诘?5%[1],飲食是引起高脂血癥、心血管疾病和糖尿病等慢性疾病的重要因素之一。近年來(lái),由于我國(guó)受西方飲食文化的影響,富含果葡糖漿的軟飲料等食品的消費(fèi)量大幅提升,果糖的攝入量也隨之增加[2]。果糖因其血糖指數(shù)低(僅為葡萄糖的20%),近年來(lái)在臨床上用來(lái)代替或部分代替葡萄糖,然而其臨床效果一直備受爭(zhēng)議。薈萃分析和系統(tǒng)綜述結(jié)果表明含果糖飲料的攝入與非酒精性脂肪肝和兒童肥胖呈顯著正相關(guān)[3-10]。本文的目的是總結(jié)果糖的食物來(lái)源、吸收和代謝,與不同疾病之間的關(guān)系及其推薦攝入量,為國(guó)民通過(guò)調(diào)節(jié)膳食中糖的攝入量以增強(qiáng)體質(zhì)提供理論指導(dǎo)。

1 果糖的主要食物來(lái)源1.1 天然食物

果糖是一種單糖,是水溶性最好的糖類(lèi)物質(zhì),首先被法國(guó)化學(xué)家AUGUSTIN于1847年發(fā)現(xiàn)[11]。純果糖是一種白色、無(wú)臭并具有甜味的固體。果糖存在于蜂蜜、蔓果類(lèi)水果、花朵、漿果以及大多數(shù)根類(lèi)蔬菜等天然食物中,其中大部分則以蔗糖形式存在。多數(shù)水果中的果糖和葡萄糖的比例均接近1∶1;蘋(píng)果和梨中的果糖是葡萄糖的2倍;蜂蜜中果糖含量最高,占總糖的50%(表 1)。

表1 常見(jiàn)天然食物中果糖和其他糖類(lèi)含量 Table 1 Fructose content in common natural food點(diǎn)擊放大

1.2 果葡糖漿

目前,我國(guó)的高濃度果糖的果葡糖漿的年消費(fèi)量近100萬(wàn)噸,且呈逐年增長(zhǎng)的趨勢(shì)[2]。在食品工業(yè)中,甘蔗常用來(lái)生產(chǎn)蔗糖糖漿,其蔗糖含量最高可達(dá)99.9%。果葡糖漿則以淀粉為原料在酶的作用下生產(chǎn)制成,其果糖含量最高可達(dá)90%。果葡糖漿主要分為F-42型(果糖42%,葡萄糖58%)、F-55型(果糖55%,葡萄糖45%)和F-90型(果糖90%,葡萄糖10%)。近年來(lái),含有高濃度果糖的果葡糖漿由于其良好的甜度和風(fēng)味已經(jīng)替代了傳統(tǒng)的蔗糖糖漿而成為了軟飲料、乳制品和面包糕點(diǎn)類(lèi)加工食品的主要甜味劑。流行病學(xué)發(fā)現(xiàn),高果糖軟飲料的攝入與兒童齲齒的發(fā)生呈顯著正相關(guān)[12]。

2 果糖在小腸內(nèi)的吸收

與葡萄糖相比,果糖進(jìn)入血液的速度較慢,且水平較低,半衰期也較長(zhǎng)[13]。健康成人在攝入450 mL的軟飲料(蔗糖69 g,果糖34.5 g)后,血液中的果糖水平從0.005 mol/L高至0.317 mol/L,在3 h后降至基線水平。同時(shí),血糖水平從5.5 mol/L升高至6.8 mol/L,在1.5 h后就恢復(fù)至基線水平[14]。GULT2、GULT4和GULT5是主要存在于小腸內(nèi)運(yùn)輸糖類(lèi)物質(zhì)的轉(zhuǎn)運(yùn)蛋白(圖 1)。果糖通過(guò)小腸上GULT2和GULT5的2種轉(zhuǎn)運(yùn)蛋白的作用,進(jìn)入至血液中[15]。其中GULT5對(duì)果糖具有高度專(zhuān)一性;GULT2可以同時(shí)轉(zhuǎn)運(yùn)葡萄糖和果糖,在由果糖引起的非酒精性脂肪肝過(guò)程中有著重要的作用[16];GULT4則將葡萄糖輸送至機(jī)體的各個(gè)部位[17-19]。由于GULT2和GULT5在小腸內(nèi)的低活動(dòng)性,使果糖在小腸的吸收率不高[20-22]。葡萄糖會(huì)影響小腸對(duì)果糖的吸收,當(dāng)攝入的葡萄糖和果糖的比例為1∶1時(shí),果糖在小腸內(nèi)的吸收率最高[23]。同時(shí),RIBY,等[24]發(fā)現(xiàn)在大鼠體內(nèi)的合成雙糖的二糖酶轉(zhuǎn)運(yùn)系統(tǒng)可同時(shí)轉(zhuǎn)運(yùn)葡萄糖和果糖,而當(dāng)酶活性受到抑制時(shí),葡萄糖促進(jìn)果糖吸收的能力被抑制。未被小腸吸收的果糖在腸內(nèi)菌群的發(fā)酵作用下,產(chǎn)生二氧化碳、短鏈脂肪酸等,從而引起腹脹、腹瀉等腸激綜合征疾病[25]。

圖1果糖在小腸中的吸收Fig. 1Absorption of fructose in small intestine

3 果糖的代謝

所有組織和細(xì)胞均參與了葡萄糖的代謝,而果糖的主要代謝場(chǎng)所是肝(圖 2)。果糖在肝中部分被氧化,一部分轉(zhuǎn)化為糖原或乳酸,而大部分則進(jìn)入到脂質(zhì)新生(de novo lipogenesis,DNL)的代謝途徑中[26-27]。BJORKMAN,等[28]曾報(bào)道腎也可以代謝果糖,機(jī)體內(nèi)其他的組織及或器官如腎、肝、睪丸,以及大腦和骨骼肌等均發(fā)現(xiàn)也有GULT5存在,但果糖在這些組織或器官內(nèi)的代謝尚未得知。果糖激酶(phosphofructokinase,PFK)、醛縮酶(aldolase,ALD)和丙糖激酶是果糖代謝過(guò)程中3種主要的酶。果糖在PFK的作用下轉(zhuǎn)化為1-果糖磷酸(fructose-1-phosphate,F-1-P),即使在機(jī)體三磷酸腺苷(adenosine triphosphate,ATP)水平較高下,果糖仍然可以不斷地轉(zhuǎn)化為F-1-P,且不受ATP的限制[29]。F-1-P在ALD的作用下生成磷酸二羥丙酮(dihydroxyacetone phosphate,DHAP)和甘油醛;甘油醛和ATP在3-磷酸甘油脫氫酶(glycerol 3-phosphate dehydrogenase,GAPD)的作用下轉(zhuǎn)化為甘油醛-3-磷酸(glyceraldehyde 3-phosphate,GA-3-P)后進(jìn)入糖酵解的代謝過(guò)程。果糖在代謝過(guò)程中無(wú)果糖磷酸激酶等限速酶的作用,進(jìn)入糖酵解的速度比葡萄糖快。果糖在肝內(nèi)部分轉(zhuǎn)化為葡萄糖,以糖原形式貯存,為機(jī)體提供能量;其余一部分代謝為脂肪酸,促進(jìn)肝中甘油三酯的合成。最近有報(bào)道稱(chēng)果糖可以促進(jìn)生長(zhǎng)因子21(fibroblast growth factor-21,FGF21)的分泌,該因子是一種可參與糖和脂質(zhì)代謝平衡的激素,高FGF21水平可增加代謝性疾病的發(fā)病風(fēng)險(xiǎn)[30-31]。

圖2果糖在肝中的代謝Fig. 2Metabolism of fructose in liver

4 果糖與脂代謝異常

DNL是機(jī)體內(nèi)一個(gè)將乙酰輔酶A轉(zhuǎn)化為脂肪酸的過(guò)程,此過(guò)程可將體內(nèi)多余的能量轉(zhuǎn)化為脂肪[32]。果糖在肝中代謝為GA-3-P后在丙酮酸激酶和乳酸脫氫酶(lactate dehydrogenase,LDH)的作用下產(chǎn)生大量的乳酸和乙酰輔酶A(圖 3),促使肝中的DNL代謝途徑加快,引起血液中甘油三酯和極低密度脂蛋白水平升高,導(dǎo)致體脂代謝異常,增加機(jī)體高脂血癥的發(fā)病風(fēng)險(xiǎn)[33-34]。因此,長(zhǎng)此以往,果糖通過(guò)DNL途徑導(dǎo)致肝貯存大量脂肪,從而引起非酒精性脂肪肝[35]。同時(shí),在肝中合成的甘油三酯進(jìn)入到血液中被運(yùn)輸至其他的組織和器官后,增加機(jī)體發(fā)生肥胖的風(fēng)險(xiǎn)[36-38]。MAERSK,等[39-40]報(bào)道當(dāng)膳食中25%的能量來(lái)自于果糖時(shí),患有胰島素抵抗的肥胖患者的血液中低密度脂蛋白水平升高,脂肪組織增加。

圖3果糖與相關(guān)疾病之間的聯(lián)系Fig. 3Relation between fructose and diseases

5 果糖與心血管疾病

高血壓是一種常見(jiàn)的非傳染性慢性疾病。影響血壓的因素很多,其中最主要的是飲食與生活方式[41]。如上所述,果糖可促進(jìn)肝內(nèi)DNL的合成,導(dǎo)致血液中棕櫚酸水平升高,從而增加心血管疾病的發(fā)病風(fēng)險(xiǎn)[42-43]。果糖在肝中的代謝不受磷酸果糖激酶等限速酶的作用,肝中內(nèi)源性磷酸和ATP迅速被消耗,腺苷酸脫氨酶的活性增加,促使磷酸腺苷(adenosine monophosphate,AMP)降解產(chǎn)生大量的核苷酸,累積大量的尿酸[44-45];同時(shí),果糖也可以間接促進(jìn)甘氨酸轉(zhuǎn)化生成尿酸[46],不斷累積的尿酸則會(huì)增加心血管疾病的發(fā)病風(fēng)險(xiǎn)。尿酸也會(huì)通過(guò)抑制內(nèi)皮細(xì)胞一氧化氮合成酶的活性,使血管中一氧化氮的含量減少而引起血管內(nèi)皮功能損傷[47-48]。此外,當(dāng)攝入果糖時(shí),會(huì)減少尿中草酸的排泄量,從而導(dǎo)致腎結(jié)石等疾病的發(fā)生[49]。

6 果糖與糖尿病

目前,我國(guó)已有9 000余萬(wàn)糖尿病患者和1.5億前期糖尿病患者,糖尿病已成為我國(guó)最重要的公共衛(wèi)生問(wèn)題[50]。飲食對(duì)血糖穩(wěn)態(tài)的影響是引起Ⅱ型糖尿病的重要原因[51]。果糖在肝中有一部分轉(zhuǎn)化為葡萄糖,葡萄糖進(jìn)入到血液中,引起機(jī)體血糖和胰島素水平稍稍升高[32]。STANHOPE,等[52]發(fā)現(xiàn)長(zhǎng)期攝入大量果糖后通過(guò)抑制味覺(jué)受體TIR2和T1R3的表達(dá),引起胰島素抵抗。體外實(shí)驗(yàn)發(fā)現(xiàn),大劑量的果糖可以刺激胰島β細(xì)胞分泌胰島素和增強(qiáng)葡萄糖刺激胰島素分泌(glucose-stimulated insulin secretion,GSIS)的作用[53]。同樣,AEBERLI,等[54]報(bào)道每日攝入80 g、110 g和250 g等大劑量果糖,會(huì)引起機(jī)體的胰島素抵抗[38, 56]。機(jī)體攝入果糖后,肝不斷累積脂肪,從而引起炎性反應(yīng)和氧化應(yīng)激反應(yīng),造成胰島素受體和胰島素信號(hào)傳導(dǎo)途徑中信號(hào)分子的表達(dá)受到抑制,導(dǎo)致機(jī)體胰島素敏感性下降,增加Ⅱ型糖尿病的發(fā)病風(fēng)險(xiǎn)。最近,KUHRE,等[57]報(bào)道果糖可能通過(guò)刺激小腸分泌胰高血糖素樣肽-1(glucagon-like peptide-1,GLP-1)來(lái)影響機(jī)體胰島素的分泌。因此,果糖與Ⅱ型糖尿病之間的關(guān)系應(yīng)引起重視,蜂蜜等富含果糖的保健食品在糖尿病患者中的食用應(yīng)引起警惕。

7 推薦攝入量

在西方,不同國(guó)家和相關(guān)組織對(duì)膳食結(jié)構(gòu)中的攝入量所占比例一直很關(guān)注。世界衛(wèi)生組織新制定的《成人和兒童糖攝入量指南》建議在整個(gè)生命歷程中減少游離糖攝入量。成人和兒童游離糖攝入量應(yīng)減至攝入總能量的10%以?xún)?nèi)。如能進(jìn)一步將其降至低于攝入總能量的5%,對(duì)健康有更多好處[58]。但是,面對(duì)這樣一個(gè)極具爭(zhēng)議性的命題,我國(guó)尚無(wú)相關(guān)膳食攝入量的建議,有關(guān)部門(mén)應(yīng)加快制定,為保障國(guó)民健康提供理論指導(dǎo)。

8 結(jié)論

果糖與非酒精性脂肪肝、肥胖、心血管疾病和Ⅱ型糖尿病等常見(jiàn)非傳染性疾病存在著一定的聯(lián)系。由于食品工業(yè)的迅猛發(fā)展,含有果糖的軟飲料消費(fèi)量正逐年增加,但若果糖應(yīng)用不當(dāng),就可對(duì)民眾的健康產(chǎn)生不利影響。因此應(yīng)予以重視,參考推薦攝入量,降低膳食中糖類(lèi)的攝入量。

參考文獻(xiàn)

[1]武陽(yáng)豐, 馬冠生, 胡永, 等.中國(guó)居民的超重和肥胖流行現(xiàn)狀.中華預(yù)防醫(yī)學(xué)雜志,2005,39(5):316–320.
WU Y F, MA G S, HU Y, et al. The prevalence of body overweight and obesity in China.Journal of Chinese Cardiovascular Medicine, 2005,39(5): 316–320. (in Chinese with English abstract)
[2]王犇, 寧玉娟, 李克賢, 等.果葡糖漿生產(chǎn)技術(shù)的研究進(jìn)展.大眾科技,2014,16(1):173–178.
WANG B, NING Y J, LI K X, et al. Fructose syrup production technology research.Popular Science Technology, 2014,16(1): 173–178. (in Chinese with English abstract)
[3]WANG Y C, BLEICH S N, GORTMAKER S L. Increasing caloric contribution from sugar-sweetened beverage and 100% fruit juices among US children and adolescents, 1988—2004.Pediatrics, 2008,121(6): 1604–1614.
[4]FORSHEE R A, ANDERSON P A, STOREY M L. Sugar-sweetened beverages and body mass index in children and adolescents: a meta-analysis.American Journal of Clinical Nutrition, 2008,87(6): 1662–2671.
[5]RUYTER J C D, OLTHOF M R, SEIDELL J C, et al. A trial of sugar-free or sugar-sweetened beverage and body weight in children.England Journal of Medicine, 2012,367(15): 1397–1414.
[6]MALIK V S, AN P, WILLETT W C, et al. Sugar-sweetened beverages and weight gain in children and adults: a systematic review and meta-analysis.American Journal of Clinical Nutrition, 2013,98(4): 1084–1102.
[7]JIA M, WANG C, ZHANG Y, et al. Sugary beverage intakes and obesity prevalence among junior high school students in Beijing-a cross-sectional research on SSBs intake.Asia Pacific of Journal Clinical Nutrition, 2012,21(3): 425–430.
[8]SULLLIAN J S, LEM T, PAN Z, et al. Oral fructose absorption in obese children with non-alcohol fatty liver disease.Pediatric Obesity, 2015,10(3): 188–195.
[9]MALIK V S, POPKIN B M, BRAY G A, et al. Sugar sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis.Diabetes Care, 2010,33(11): 2477–2483.
[10]CHUANG M, MA J T, PATEL K, et al. Fructose, high-fructose corn syrup, sucrose, and nonalcoholic fatty liver disease or indexes of liver health: a systematic review and meta-analysis.American Journal of Clinical Nutrition, 2014,100(3): 833–849.
[11]FLETCHER H G. Augustin-Pierre Dubrunfaut-An early sugar chemist.Journal of Chemical Education, 1940,17(4): 153–156.
[12]PARK S, LIN M, ONUFRAK S, et al. Association of sugar-sweetened beverage intake during infancy with dental caries in 6-year olds.Clinical Nutrition Research, 2015,4(1): 9–17.
[13]PAGEK A, CHAN O, ARORA J, et al. Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways.Journal of the American Medical Association, 2013,309(1): 63–70.
[14]LE M T, Frye R F, RIVARD C J, et al. Effects of high-fructose corn syrup and sucrose on the pharmacokinetic of fructose and acute metabolic and hemodynamic response in healthy subjects.Metabolism, 2012,61(5): 641–651.
[15]LI D, HEANEY A P. Regulation of adipose differentiation by fructose and GLUT5.Molecular Endocrinology, 2012,26(10): 1773–1782.
[16]REGNELL S E, LERMARK A. Hepatic steatosis in type 1 diabetes.Review of Diabetic Studies Rds, 2011,8(4): 454–467.
[17]KELLET G L, BROT-LAROCHE E. Apical GLUT2-a major pathway of intestine sugar absorption.Diabetes, 2005,54(10): 3056–3062.
[18]STUART C A, HOWELL M E, BAKER J D, et al. Cycle training increased GLUT4 and activation of mTOR in fast twitch muscle fibers.Medicine & Science Sports Exercise, 2010,42(1): 96–106.
[19]BYER P L, CAVIAR E M, MCCALLUM R W. Fructose intake at normal levels in the US may cause gastrointestinal distress in normal adults.Journal of American Diet Association, 2005,105(10): 1559–1566.
[20]DENSUPSOONTORN H, JIRAPINYO P, THAMONSIRI N, et al. Fructose malabsorption in Thai adult.Asia Pacific of Journal Clinical Nutrition, 2007,16(2): 209–212.
[21]GOMARA R E, HALTAS M S, NEWMAN L J, et al. Fructose intolerance in children presenting with abdominal pain.Journal of Pediatric Gastroenterology & Nutrition, 2008,47(3): 303–308.
[22]TRESWELL A S, SEACH J M, THORBURN A W. Incomplete absorption of pure fructose in healthy subjects and the facilitating effect of fructose.American Journal of Clinical Nutrition, 1988,48(6): 1424–1430.
[23]KNEEPKENS C M, VONK R J, FERNANDES J. Incomplete intestinal absorption of fructose.Archives of Disease in Childhood, 1984,59(8): 735–738.
[24]RIBY J E, FUJISAWA T, KRETCHMER N. Fructose absorption.American Journal of Clinical Nutrition, 1993,58(5): 748–753.
[25]DOUAR V, FERRARIS R P. The role of fructose transporter in disease linked to excessive fructose induced disease.Journal of Physiology, 2013,591(2): 401–414.
[26]LECOULTRE V, BENOIT R, CAREEL G, et al. Fructose and glucose co-ingestion during prolonged exercises increase lactate and glucose fluxes and oxidation compared with an equimolar intake of glucose.American Journal of Clinical Nutrition, 2010,92(5): 1071–1079.
[27]COUCHEPIN C, KIM-ANN L E, BORTOLOTTI M, et al. Markedly blunted metabolic effects of fructose in healthy young female subjects compared with male subjects.Diabetes Care, 2008,31(6): 1254–1256.
[28]BJORKMAN O, FELIG P. Role of the kidney in the metabolism of fructose in 60-hour fasted human.Diabetes, 1982,31(6): 516–520.
[29]SAMUEL V T. Fructose induced lipogenesis: from sugar to fat to insulin resistance.Trends Endocrinology & Metabolism, 2011,22(2): 60–65.
[30]DUSHAY J R, TOSCHI E K, MITTEN F M, et al. Fructose ingestion acutely stimulates circulating FGF21 levels in humans.Molecular Metabolism, 2014,4(1): 51–57.
[31]BOBBERT F, SCHWARZ F, FISHER-ROSINSK Y, et al. Fibroblast growth factor 21 predicts the metabolic syndrome and type 2 diabetes in Caucasians.Diabetes Care, 2013,36(1): 145–149.
[32]HELLERSTEIN M K, SCHWARZ J M, NEESE R A. Regulation of hepatic de novo lipogenesis in humans.Annual Review of Nutrition, 1996,16(1): 523–57.
[33]STANHOPE K L, GRIFFEN S, BAIR S, et al. Twenty four endocrine and metabolic profiles following consumption of high-fructose corn syrup, sucrose, fructose and glucose-sweetened beverages with meals.American Journal of Clinical Nutrition, 2008,87(5): 1194–1203.
[34]TEFF K L, GRUDZIAL J, TOWNSEND R R, et al. Endocrine and metabolic effects of consuming fructose and glucose sweetened beverage with meals in obese men and women: influence of insulin resistance on plasma triglyceride responses.Journal of Clinical Endocrinology & Metabolism, 2009,94(5): 1562–1569.
[35]DONNELLY K L, SMITH C L, SCHWARZENBERG S J, et al. Sources of fatty acid stored in liver and secreted via lipoprotein in patients with nonalcoholic fatty liver disease.Journal of Clinical Investigation, 2005,115(5): 1343–1351.
[36]MADERO M, ARRIAGE J C, JALAL D, et al. The effect of two energy-restricted diets, a low-fructose diet versus a moderate natural fructose on weight loss and metabolic syndrome parameters: a randomized controlled trial.Metabolism Clinical & Experimental, 2011,60(11): 1551–1559.
[37]STANHOPE K L, SCHWARZ J M, KEIM N L, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increase visceral adiposity and lipids and decrease insulin sensitivity in overweight/obese human.Journal of Clinical Investigation, 2009,119(5): 1322–1334.
[38]LE KA, ITH M, KREIS R, et al. Fructose over-consumption caused dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes.American Journal of Clinical Nutrition, 2009,89(6): 1760–1765.
[39]MAERSK M, BELZA A, HOLST J J, et al. Satiety scores and satiety hormone response after sucrose-sweetened soft drink compared with isocaloric semi-skimmed milk and with non-caloric soft drink: a controlled trial.European Journal of Clinical Nutrition, 2012,66(4): 523–529.
[40]MAERSK M, BELZA A, STODKIDE-JORGENSEN H, et al. Sucrose-sweetened beverage increase fat storage in the liver, muscle, and visceral fat depot: a 6-mo randomized intervention study.American Journal of Clinical Nutrition, 2012,95(2): 283–389.
[41]DASKALOPOILOU S S, KHAN N A, QUINN R R, et al. The 2012 Canadian hypertension education program recommendations for the management of hypertension: blood pressure measurement, diagnosis, assessment of risk, and therapy.Canadian Journal of Cardiology, 2012,28(3): 270–287.
[42]ARSLAND A, WOLFE R R. Hepatic secretion of VLDL fatty acids during stimulated lipogenesis in men.Journal of Lipid Research, 1998,39(6): 1280–1286.
[43]CONNOER W E. Harbingers of coronary heart disease: dietary saturated fatty acid and cholesterol. Is chocolate benign because of its stearic acid content.American Journal of Clinical Nutrition, 1999,70(6): 951–952.
[44]RHO Y H, ZHU Y Y, CHOI H K. The Epidemiology of Uric Acid and Fructose.Seminars in Nephrology, 2011,31(5): 410–419.
[45]PEREZR-POZO S E, SCHOLD J, NAKAGAWA T, et al. Excessive fructose intake induces the features of metabolic syndrome in healthy adult men: role of uric acid in the hypertensive response.International Journal of Obesity, 2010,34(3): 454–461.
[46]WANG D D, SIEVENPIPER J L, DE-SOUZA R J, et al. The effects of fructose on serum uric acid vary among controlled dietary trials.Journal of Nutrition, 2012,142(5): 916–923.
[47]BIDWELL A J, HOLMSTRUP M E, DOYLE R P, et al. Assessment of endothelial function and blood metabolic status following acute ingestion of a fructose-containing beverage.Acta Physiologica, 2010,200(1): 35–43.
[48]ZHAO C X, XU X, CUI Y, et al. Increased endothelial nitric-oxide synthase expression reduces hypertension and hyperinsulinemia in fructose-treated rats.Journal of Pharmacol & Experimental, 2009,328(2): 610–620.
[49]JOHNSON R J, SANCHEZ-LOZADA L G, NAKAGAWA T. The effect of fructose on renal biology and disease.Journal of the American Society of Nephrology, 2010,21(12): 2036–2039.
[50]YANG W, LU J, WENG J, et al. Prevalence of diabetes among men and women in China.England Journal of Medicine, 2010,362(12): 1090–1101.
[51]AJAILA O, ENGLISH P, PINKNEY J. Systematic review and meta-analysis of different dietary approaches to the management of type 2 diabete.American Journal of Clinical Nutrition, 2013,97(3): 505–516.
[52]STANHOPE K L, SCHWARZ J M, KEIM N L, et al. Sweet taste receptor expressed in pancreatic β-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion.PLoS ONE, 2009,4(4): e5106.
[53]REIMANN F, HABIBA M, TOLHURST G, et al. Glucose sensing in L cells: a primary cell study.Cell Metabolism, 2008,8(6): 532–539.
[54]AEBERLI I, HOCHULI M, GERBER P A, et al. Moderate amount of fructose consumption impair insulin sensitivity in healthy young men: a randomized controlled trial.Diabetes Care, 2013,36(1): 150–156.
[55]BECK-NIELSEN H, PEDERSEN O, LINDSKOV H O. Impaired cellular insulin biding and insulin sensitivity induced by high-fructose feeding in normal subjects.American Journal of Clinical Nutrition, 1980,33(2): 273–278.
[56]HALLFRISCH J, ELLWOODK C, MICHAELIS O E, et al. Effects of dietary fructose on plasma-glucose and hormone response in normal and hyperinsulinemic.Journal of Nutrition, 1983,113(9): 1819–1826.
[57]KUHRE R E, GRIBBLE F M, HARTMAN B, et al. Fructose stimulates GLP-1 but not GIP secretion in mice, rats and humans.American Journal of Physiol Gastrointestinal Liver Physiology, 2014,306(7): G622–630.
[58]World Health Organisation. Guideline: Sugars Intake for Adults and Children. Geneva: World Health Organization, 2015.

相關(guān)知識(shí)

果糖的吸收代謝以及與健康的關(guān)系
Interaction between polysaccharide and intestinal flora and its structure
Anxiety and Depression in Patients with Chronic Health Problems and the Mode of Response
Disparities in Preventive Oral Health Care and Periodontal Health Among Adults With Diabetes
Optimizing Nutrition and Hydration for Health and Wellness
Arts and health
Relationship of childhood abuse,social support and psychological sub
Fiber supplements and clinically proven health benefits: How to recognize and recommend an effective fiber therapy
A cup of enzyme every day improves immunity and reduces illness
Benefits of Sexual Activity on Psychological, Relational, and Sexual Health During the COVID

網(wǎng)址: Absorption and metabolism of fructose and its relationship with human health http://m.u1s5d6.cn/newsview1352971.html

推薦資訊