首頁 資訊 Advance in components with antitumor effect of Panax ginseng and their mechanisms

Advance in components with antitumor effect of Panax ginseng and their mechanisms

來源:泰然健康網(wǎng) 時間:2024年12月07日 13:18

摘要: 人參是中國延用了兩千多年珍貴的傳統(tǒng)中藥材之一,由于其具有諸多藥理作用而臨床廣泛應(yīng)用于治療腫瘤等多種疾病。目前腫瘤已經(jīng)成為威脅人類健康的重要因素,因而人參抗腫瘤作用也越加受到關(guān)注。針對人參抗腫瘤作用的有效成分及其分子作用機(jī)制、構(gòu)效關(guān)系進(jìn)行綜述。研究表明人參抗腫瘤作用的主要有效成分為人參皂苷及其腸道菌群代謝產(chǎn)物、人參多糖和人參炔醇,這些活性成分發(fā)揮藥理作用的機(jī)制目前已較為明確,其作用機(jī)制主要包括誘導(dǎo)腫瘤細(xì)胞周期阻滯、凋亡及分化、增強(qiáng)對腫瘤細(xì)胞免疫、抑制腫瘤細(xì)胞增殖及侵襲與轉(zhuǎn)移等,而其分子機(jī)制涉及許多相關(guān)基因、蛋白、蛋白酶、免疫細(xì)胞、細(xì)胞因子及相關(guān)信號通路等的調(diào)控與表達(dá)。此外,人參有效成分的抗腫瘤作用表現(xiàn)出一定的劑量依賴性,且其化學(xué)結(jié)構(gòu)的不同導(dǎo)致抗腫瘤活性有所差異。人參中含有豐富的抗腫瘤活性成分,有望為臨床治療各種腫瘤提供安全有效的天然藥物及制劑。

Advance in components with antitumor effect of Panax ginseng and their mechanisms

LUO Lin-ming1 ,SHI Ya-ning1,JIANG Yi-na1,ZHAN Ji-hua1,QIN Li1,CHEN Nai-hong1,2    

Abstract: Panax ginseng C. A. Mey is one of precious traditional Chinese herbal medicine for two thousand years history, due to its various pharmacological effects and wide utilization in the clinical treatment of tumors and other diseases. Presently tumor has become an important factor threatening human health that the antitumor effect of P. ginseng is attracted great attention. In this paper, the effective components of antitumor action by P. ginseng and its molecular mechanism and structure-activity relationship are summarized. Studies have shown that the main effective components of P. ginseng for antitumor effect are ginsenosides and its metabolic products of intestinal bacteria, ginseng polysaccharides, and ginseng polyacetylenes. The functional mechanism of which are clear relatively now and their main mechanisms including induction of cycle arrest, apoptosis and differentiation of tumor cells, enhancement of immunity to tumor cells, inhibition of tumor cell proliferation, invasion and metastasis, etc. And the molecular mechanism is involved in the regulation of many related genes, proteins, proteases, immune cells, cytokines, and signaling pathways, etc. In addition, the active ingredients of P. ginseng exert antitumor effect in a dose-dependent manner, and the different chemical structures of which lead to different antitumor activity. In conclusion, P. ginseng is abundant with antitumor active ingredients, which is expected to provide safe and effective natural medicine and its preparation for clinical treatment of various tumors in the future.

Key words:Panax ginseng C. A. Mey    ginsenoside    antitumor    molecular mechanism    structure-activity relationship    

人參為五加科植物人參Panax ginseng C. A. Mey.的干燥根或根莖,作為“上品”的補(bǔ)益藥使用已有兩千多年的歷史,是中國最常用的、最重要的、最珍貴的傳統(tǒng)中藥材之一。現(xiàn)在人參葉也已經(jīng)被《中國藥典》收錄作為單獨(dú)的藥用品種使用。人參由于具有很高的藥用價值,在臨床上廣泛用于治療心血管、胃和肝臟疾病、神經(jīng)衰弱及腫瘤等[1]。目前,人參藥用價值的開發(fā)以及發(fā)揮藥理作用的有效成分及其作用機(jī)制研究已經(jīng)取得了很大的突破。最新的研究進(jìn)展表明[2-3],人參含有豐富的三萜皂苷類及多糖類等生物活性成分,這些活性成分尤其皂苷類成分具有廣泛的藥理作用,如抗腫瘤、抗氧化、抗炎、抗過敏、抗疲勞、抗應(yīng)激、抗輻射、抗衰老、抗骨質(zhì)疏松、免疫調(diào)節(jié)、調(diào)血脂、降血糖、保肝、保護(hù)中樞神經(jīng)及心腦血管系統(tǒng)等。其中,抗腫瘤作用的機(jī)制及其藥效物質(zhì)基礎(chǔ)的研究是目前一大熱點(diǎn),人參也已成為腫瘤輔助治療的熱點(diǎn)藥物。本文就人參抗腫瘤的分子機(jī)制、有效成分及其構(gòu)效關(guān)系的研究進(jìn)展進(jìn)行綜述,為進(jìn)一步深入研究以及臨床應(yīng)用提供參考與理論依據(jù)。

1 人參抗腫瘤作用的主要有效成分

大量藥理實(shí)驗(yàn)數(shù)據(jù)表明人參具有顯著的抗腫瘤作用,其中具有抗腫瘤活性的成分有人參皂苷(ginsenosides)及其代謝產(chǎn)物、人參多糖(ginseng polysaccharides)和人參炔醇(ginseng polyacetylenes)。人參皂苷是人參抗腫瘤作用的主要成分,其次為人參多糖。普通人參皂苷進(jìn)入人體后經(jīng)過腸道菌群的代謝作用發(fā)生逐級脫糖基,最終轉(zhuǎn)化為次皂苷和/或皂苷元[4],如人參皂苷Rb1、Rb2、Rc和Rd可代謝轉(zhuǎn)化為人參皂苷Rg3、F2、CK,人參皂苷Rg1代謝轉(zhuǎn)化為人參皂苷Rh1和F1[5],人參皂苷Rg3又可轉(zhuǎn)化為人參皂苷Rg5,人參皂苷Rg5還可轉(zhuǎn)化為Rh3,CK則轉(zhuǎn)化為原人參二醇(protopanoxadiol,PPD)等[6]。目前據(jù)文獻(xiàn)報道具有抗腫瘤作用的單體人參皂苷及其代謝產(chǎn)物有人參皂苷Rb1、Rb2、Rb3[7]、Rg1、Rg3及6-乙?;?Rg3[8]、Rg5、Rg18[8]、Rh1、Rh2、Rh4、Rk1、Rp1、Rd、Re、Re7[8]、Rs11[8]、Rf[9]、F1、F2[10]、CK及苷元PPD、25-OH-PPD、25-OCH3-PPD[11]等。其中人參皂苷Rb1、Rb2、Rb3、Rc、Rd、Rg3、Rg5、Rh2、Rs11、Rk1、F2、CK屬于人參二醇型皂苷(panaxadiol saponin,PDS),人參皂苷Re、Re7、Rg1、6-乙酰基-Rg3、Rg18、Rh1、Rh4、Rp1、Rf和F1為人參三醇型皂苷(panaxtrol saponin,PTS)。目前已從人參植物的根或果中分離純化出多種抗腫瘤多糖,包括人參多糖GFP1 [相對分子質(zhì)量約為1.4×105,由半乳糖(galactose,Gal)、葡萄糖(glucose,Glu)、鼠李糖(rhamnose,Rha)和阿拉伯糖(arabinose,Ara)組成,摩爾比為6.1:2.0:1.1:3.2[12]]、人參多糖PGP2a [相對分子質(zhì)量約為3.2×104,由Gal、Ara、Glu和半乳糖醛酸(galacturonic acid,GalA)組成,摩爾比為3.7:1.6:0.5:5.4[13]]、人參多糖PGPW1 [相對分子質(zhì)量約為3.5×105,由Glu、Gal、甘露糖(mannose,Man)和Ara組成,摩爾比3.3:1.2:0.5:1.1[14]]及酸性人參多糖ginsan(相對分子質(zhì)量約為1.5×105[15])等。人參中還含有少量聚乙炔醇類成分具有抗腫瘤活性,如人參環(huán)氧炔醇(panaxydol,PND)、人參炔三醇(panaxytriol,PNT)和人參炔醇(panaxynol,PNN)等。

2 人參有效成分的抗腫瘤作用

人參有效成分復(fù)雜、種類多樣,因而其能對抗多種類型腫瘤,目前文獻(xiàn)報道人參對肝癌、肺癌、胃癌、腎癌、鱗癌、結(jié)腸癌、食管癌、膽囊癌、黑色素瘤、膠質(zhì)瘤、乳腺癌、乳頭瘤、宮頸癌、卵巢癌、子宮內(nèi)膜癌、膀胱癌、前列腺癌、鼻咽癌、腹水癌、淋巴瘤、骨髓瘤、骨肉瘤、白血病等腫瘤的增殖具有顯著的抑制作用,還能明顯抑制肝癌、肺癌、胃癌、乳腺癌、子宮內(nèi)膜癌、卵巢癌、前列腺癌、胰腺癌、膀胱癌、黑色素瘤、膠質(zhì)瘤、纖維肉瘤等腫瘤的侵襲與轉(zhuǎn)移。人參中單一有效成分也表現(xiàn)出抗多種腫瘤活性,如PPD對肝癌、肺癌、黑色素瘤、乳腺癌和宮頸癌等均有顯著抑制作用。人參的有效成分抗腫瘤作用大多表現(xiàn)出一定的劑量依賴性,隨著劑量增大抗腫瘤活性增強(qiáng),有些還具有時間依賴性。人參有效成分與其他藥物聯(lián)合使用可以增強(qiáng)抗腫瘤效果,如人參皂苷CK與順氯氨鉑(DDP)聯(lián)合[16]、人參皂苷Rg3聯(lián)合恩度(endostar)[17]對乳腺癌可以產(chǎn)生更好的治療效果,人參皂苷Rg3聯(lián)合絲裂霉素(mitomycin C)加呋喃尿嘧啶(tegafur)化療可改善晚期胃癌患者的生存率[18],20(S)-PPD與骨化三醇(calcitriol)協(xié)同抑制前列腺癌細(xì)胞生長[19],PPD顯著增強(qiáng)5-氟尿嘧啶(fluorouracil)的抗結(jié)腸癌作用[20],人參酸性多糖協(xié)同紫杉醇(paclitaxel,PTX)可增加巨噬細(xì)胞的殺瘤活性[21],同時ginsan可增強(qiáng)重組白細(xì)胞介素(recombinant interleukin,rIL)-2對黑色素瘤細(xì)胞肺轉(zhuǎn)移的抑制作用[22]等。另外,有報道通過對人參進(jìn)行加熱[23]、蒸制成紅參[24]或?qū)⒓t參進(jìn)一步發(fā)酵[25]均可提高人參抗腫瘤的效果,原因可能是這些處理會改變?nèi)藚⒃碥盏扔行С煞值牧炕蚍N類,如鮮人參或生曬參中其實(shí)是不存在PNT和人參皂苷Rh2的,而紅參中含有,PNT是在人參加工過程中由PND的環(huán)氧環(huán)經(jīng)水解作用生成[26],人參皂苷Rh2是在蒸制過程中可由人參皂苷Rb2經(jīng)脫糖基作用形成[27]。

3 人參有效成分抗腫瘤作用機(jī)制3.1 抑制腫瘤細(xì)胞增殖

腫瘤細(xì)胞具有無限增殖的特性,主要以有絲分裂的方式進(jìn)行增殖。人參有效成分人參皂苷、人參多糖及人參炔醇在腫瘤細(xì)胞增殖過程中可顯著抑制細(xì)胞增殖活力與細(xì)胞分裂。研究表明20(S)-人參皂苷Rg3[28-29]、人參皂苷Rd[30]、PNT[31]、PNN[32]等能夠抑制腫瘤細(xì)胞的有絲分裂及在分裂間期DNA的合成,如在結(jié)腸癌細(xì)胞中抑制細(xì)胞內(nèi)增殖相關(guān)蛋白增殖細(xì)胞核抗原(proliferation cell nuclear antigen,PNCA)的表達(dá),導(dǎo)致DNA復(fù)制和修復(fù)的減少,從而抑制細(xì)胞分裂增殖。人參皂苷Rd還能降低微管相關(guān)蛋白RP/EB家族成員stathmin1(STMN1)的表達(dá),抑制微管聚合形成紡錘體,也能提高stratifin(SFN)的表達(dá)干擾有絲分裂進(jìn)程[30]。在癌細(xì)胞中組蛋白去乙?;福╤istone deacetylases,HDACs)的過表達(dá)與組蛋白乙酰轉(zhuǎn)移酶(histone acetyltransferase,HAT)的低表達(dá)導(dǎo)致組蛋白低乙?;?,而組蛋白低乙酰化常使染色質(zhì)失去轉(zhuǎn)錄活性,不利于腫瘤抑制基因的表達(dá)。目前研究表明人參皂苷Rg3能降低HDAC3表達(dá),從而增加p53乙?;蛊滢D(zhuǎn)錄活性提高[33],同時20(S)-人參皂苷Rh2[34]可降低白血病細(xì)胞中HDAC1、HDAC2及HDAC6的活性及表達(dá),并增加HAT的活性,使組蛋白(histone)H3的乙酰化水平增加,從而對腫瘤細(xì)胞發(fā)揮抗增殖作用。

近來研究表明人參皂苷還能抑制“Warburg效應(yīng)”,即癌細(xì)胞在有氧條件下通過糖酵解代謝葡萄糖[35],Warburg效應(yīng)有利于腫瘤生長。20(S)-人參皂苷Rg3在卵巢癌細(xì)胞中通過抑制信號轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活因子(signal transducers and activators of transcription,STAT)3通路抑制關(guān)鍵酶己糖激酶(hexokinase,HK)2和丙酮酸激酶(pyruvate kinase,PK)M2的活性[36],同時在白血病細(xì)胞中人參皂苷Rh2可通過降低蛋白激酶B(protein kinase B,PKB/Akt)/哺乳動物類雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信號下調(diào)磷酸葡萄糖異構(gòu)酶(phosphoglucose isomerase,PGI)表達(dá)[37],從而抑制有氧糖酵解。人參皂苷也能調(diào)控一些與腫瘤細(xì)胞增殖密切相關(guān)的生長因子,如胰島素樣生長因子(insulin-like growth factors,IGFs)等。研究發(fā)現(xiàn)人參皂苷Rg3、Rp1可通過減少分泌IGF-1并抑制其受體(IGF-1R)表達(dá),且使Akt/mTOR通路失活對多發(fā)性骨髓瘤、乳腺癌細(xì)胞增殖產(chǎn)生抑制作用[38-39]。因此,Akt/mTOR通路是人參調(diào)控腫瘤細(xì)胞增殖關(guān)鍵的相關(guān)信號通路之一。此外,研究發(fā)現(xiàn)人參皂苷還能調(diào)控一些microRNAs(miRNAs)表達(dá)來抑制腫瘤細(xì)胞增殖。人參皂苷Rh2可能通過上調(diào)miR-491抑制與細(xì)胞增殖和信號傳導(dǎo)密切相關(guān)的表皮生長因子受體(epidermal growth factor receptor,EGFR)信號通路[40],以及上調(diào)miRNA-128的表達(dá)抑制膠質(zhì)瘤細(xì)胞增殖[41]。另外,人參多糖PGPW1還能夠抑制膀胱癌細(xì)胞表面的莨菪堿受體3(muscarinic receptor 3,M3R)表達(dá),從而抑制細(xì)胞增殖和遷移[14]。

3.2 誘導(dǎo)腫瘤細(xì)胞周期阻滯

細(xì)胞周期阻滯是抑制腫瘤細(xì)胞增殖的重要環(huán)節(jié)。細(xì)胞分裂周期可分為DNA合成前期(G1期)、DNA合成期(S期)、DNA合成后期(G2期)、細(xì)胞分裂期(M期),另外還有一個處于休眠狀態(tài)不增殖分裂的靜止期(G0期)。人參有效成分中大多數(shù)人參皂苷可誘導(dǎo)腫瘤細(xì)胞周期阻滯在G0/G1期,少數(shù)人參皂苷阻滯在G2/M期,如人參皂苷Rf誘導(dǎo)人成骨肉瘤細(xì)胞周期阻滯于G2/M期[9];人參多糖及人參炔醇類成分可阻滯腫瘤細(xì)胞周期于G2/M期[13, 31]。

人參的有效成分可通過多種途徑誘導(dǎo)腫瘤細(xì)胞周期阻滯。人參皂苷Rg3[42]、Rg5[43]、Rh2[44-46]、CK[47]及25-OH-PPD[48]等在多種腫瘤如乳腺癌、胃癌、肺癌、前列腺癌等細(xì)胞周期相關(guān)蛋白調(diào)控階段,通過上調(diào)細(xì)胞周期調(diào)控因子毛細(xì)血管擴(kuò)張性共濟(jì)失調(diào)突變蛋白(ataxia telangiectasia mutated,ATM)、p53、p27、p21、p15、pRb2/p130的表達(dá),下調(diào)鼠雙微體基因(murine double minute,MDM)2表達(dá)、Rb磷酸化、E2F1轉(zhuǎn)錄活性等,進(jìn)而使細(xì)胞分裂周期蛋白(cell division cycle protein,CDC)-2、25A,細(xì)胞周期蛋白(cyclin,Cyc)-B、D1、D2、D3、E2,周期蛋白依賴性蛋白激酶(cyclin dependent kinase,CDK)-4、6等的表達(dá)下調(diào),最終使腫瘤細(xì)胞周期阻滯在G0/G1期。p27、p21、p15及p16等為CDK抑制劑(CDKIs),研究表明人參皂苷CK[47]、Rh2[44, 46]等在結(jié)腸癌、白血病細(xì)胞中是通過上調(diào)磷脂酰肌醇-3-羥激酶(phosphatidyl inositol 3-kinase,PI3K)/Akt和轉(zhuǎn)化生長因子(transforming growth factor,TGF)-β信號轉(zhuǎn)導(dǎo)通路,促進(jìn)這些CDKIs對cyclin-CDKs復(fù)合物(如cyclin D1-CDK4、cyclin D1-CDK6)、CDKs激酶(如CDK-2、4、6)活性的抑制作用,從而使腫瘤細(xì)胞停滯于G1期。

3.3 誘導(dǎo)腫瘤細(xì)胞凋亡

大量的實(shí)驗(yàn)數(shù)據(jù)表明人參及其人參皂苷等有效成分能夠顯著誘導(dǎo)多種腫瘤細(xì)胞凋亡,這是人參發(fā)揮抗腫瘤作用的一個非常重要的機(jī)制。細(xì)胞凋亡主要有三大途徑:線粒體介導(dǎo)凋亡(內(nèi)源性途徑)、死亡受體介導(dǎo)凋亡(外源性途徑)、內(nèi)質(zhì)網(wǎng)應(yīng)激介導(dǎo)凋亡途徑。研究發(fā)現(xiàn)20(S)-人參皂苷Rg3,人參皂苷Rg5、Rh2、Rk1、CK、PPD等能誘導(dǎo)內(nèi)源性凋亡即上調(diào)Bcl-2家族成員Bad、Bid、Bim、Bax及Bak等促凋亡蛋白的表達(dá),同時下調(diào)Bcl-2、Bcl-xL等抗凋亡蛋白表達(dá),促使線粒體跨膜電位降低并釋放細(xì)胞色素(cytochrome,Cyto)C,隨后半胱天冬酶(caspase,Casp)-9被激活;且20(S)-人參皂苷Rg3、人參皂苷Rh2、Rk1、CK、PPD也能誘導(dǎo)腫瘤細(xì)胞外源性凋亡即上調(diào)p53,死亡受體TRAIL-R1(DR4)、TRAIL-R2(DR5),F(xiàn)as及其配體(FasL)的表達(dá),然后Casp-8被激活。這2條途徑都可以激活下游效應(yīng)分子Casp-3、7,并使聚ADP-核糖聚合酶(poly-ADP-ribose polymerase,PARP)裂解,從而導(dǎo)致腫瘤細(xì)胞凋亡[42-43, 45, 49-52]。人參皂苷Rb1、Rb2和Rg1雖然在肺癌細(xì)胞中能使Casp-3、8的表達(dá)水平明顯升高,但Casp-9和抗凋亡蛋白Bax的水平并沒有改變,說明這3種人參皂苷通過外源性凋亡途徑而不是內(nèi)在的線粒體途徑誘導(dǎo)腫瘤細(xì)胞凋亡[53]。在內(nèi)源性凋亡途徑中,Bcl-2蛋白家族是控制線粒體釋放致凋亡因子的主要調(diào)節(jié)因子,而Casps不管在外源性還是內(nèi)源性凋亡途徑中都是必不可少的,但在腫瘤細(xì)胞中凋亡抑制因子(inhibitor of apoptosis proteins,IAPs)的表達(dá)可直接或間接抑制Casps的活性而抑制細(xì)胞凋亡。研究發(fā)現(xiàn)20(S)-人參皂苷Rg3[54]及人參皂苷Rh2[55]可下調(diào)IAPs家族蛋白XIAP、survivin的表達(dá)從而阻止Casps被抑制。

人參有效成分可以通過多種途徑調(diào)控多種凋亡相關(guān)蛋白的表達(dá),從而誘導(dǎo)或加速腫瘤細(xì)胞發(fā)生凋亡。研究表明人參皂苷CK在多發(fā)性骨髓瘤細(xì)胞中可能是通過增加蛋白酪氨酸磷酸酶(protein tyrosine phosphatase,PTP)SHP-1的表達(dá)抑制Janus kinas1(JAK1)及STAT3的磷酸化,并下調(diào)STAT3靶基因Bcl-2、Bcl-xL、survivin的表達(dá),表明其可通過抑制JAK1/STAT3信號通路介導(dǎo)腫瘤細(xì)胞凋亡[56];人參皂苷Rg3能下調(diào)胰腺癌細(xì)胞中可磷酸化許多特異性底物的原癌基因Pim-3蛋白的表達(dá),進(jìn)而促進(jìn)下游因子Bad磷酸化[57],且在乳腺癌細(xì)胞中通過滅活細(xì)胞外信號調(diào)節(jié)激酶(extracellular signal-regulated kinase,ERK)/Akt信號以及突變p53失穩(wěn)阻斷核轉(zhuǎn)錄因子-κB(NF-κB)信號,進(jìn)而抑制Bcl-2的表達(dá)[58];人參皂苷Rh2在白血病細(xì)胞可通過下調(diào)miR-21表達(dá),使靶Bcl-2 mRNA與3′-UTR結(jié)合而抑制其翻譯[59];人參皂苷Rk1能夠通過降低端粒逆轉(zhuǎn)錄酶(telomerase reverse transcriptase,TERT)mRNA及c-MYC表達(dá)抑制端粒酶活性,從而抑制腫瘤細(xì)胞增殖并促進(jìn)凋亡[60];人參皂苷Rd在胃癌、乳腺癌細(xì)胞可抑制M型瞬時受體電位(melastatin type transient receptor potential,TRPM)7通道活性,從而誘導(dǎo)腫瘤細(xì)胞凋亡[61];人參皂苷CK還能增加神經(jīng)鞘氨醇(sphingosine,Sph)、神經(jīng)酰胺(ceramide,Cer)的表達(dá),參與腫瘤細(xì)胞凋亡[62];人參多糖PGP2a在胃癌細(xì)胞中可通過下調(diào)Twist、AKR1C2蛋白表達(dá),上調(diào)NF1表達(dá)而誘導(dǎo)腫瘤細(xì)胞凋亡等[13]。

人參有效成分也可通過多條信號轉(zhuǎn)導(dǎo)通路誘導(dǎo)腫瘤細(xì)胞凋亡。人參皂苷CK在結(jié)腸癌細(xì)胞中通過鈣離子/鈣調(diào)蛋白激活的蛋白激酶(Ca2+/calmodulin-activated protein kinase,CAMK)-Ⅳ使腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)磷酸化,使其被激活,而AMPK的活化可誘發(fā)腫瘤細(xì)胞凋亡,表明人參皂苷CK可激活CAMK-Ⅳ/ AMPK信號通路[63];20(S)-PPD可抑制PI3K/Akt信號通路[64];人參皂苷Rg1通過抑制紅細(xì)胞生成素受體(erythropoietin receptor,EpoR)在白血病細(xì)胞膜表面的表達(dá),并抑制其介導(dǎo)的JAK2/STAT5信號通路[65];人參皂苷Rg3在膠質(zhì)瘤細(xì)胞中抑制MEK信號通路[66];人參皂苷Rh2在白血病細(xì)胞中上調(diào)腫瘤壞死因子-α(TNF-α)信號通路[67]、在鱗狀細(xì)胞癌使PI3K/Akt通路滅活[68];人參皂苷F2可激活凋亡信號調(diào)節(jié)激酶(apoptosis signal-regulating kinase,ASK)-1/c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)信號通路[69];人參皂苷Rg3、CK和Rh2在惡性膠質(zhì)瘤、膀胱癌細(xì)胞中可促進(jìn)活性氧(reactive oxygen,ROS)的形成與積累,且ROS能促進(jìn)激活p38 MAPK信號通路等[66, 70-71];人參多糖可阻斷Wnt/β-catenin信號通路等[72]。人參有效成分可以調(diào)控以上這些信號通路在腫瘤細(xì)胞中引發(fā)或促進(jìn)Casps依賴性細(xì)胞凋亡。除了Casps依賴性凋亡途徑,人參皂苷也可通過Casps非依賴性途徑誘導(dǎo)腫瘤細(xì)胞凋亡。研究表明人參皂苷CK在結(jié)腸癌、鼻咽癌細(xì)胞中也能通過誘導(dǎo)線粒體釋放凋亡誘導(dǎo)因子(apoptosis inducing factor,AIF),并從胞質(zhì)向胞核轉(zhuǎn)移,從而引起DNA損傷、降解及染色質(zhì)凝聚,導(dǎo)致腫瘤細(xì)胞凋亡,這是一種Casps非依賴性凋亡途徑[63, 73]。

最近研究還表明人參皂苷Rg3、人參環(huán)氧炔醇可通過內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress,ERS)介導(dǎo)腫瘤細(xì)胞凋亡。內(nèi)質(zhì)網(wǎng)凋亡途徑主要有2種方式:一是內(nèi)質(zhì)網(wǎng)對Ca2+的調(diào)控,二是內(nèi)質(zhì)網(wǎng)上Casp-12的激活。PND在乳腺癌細(xì)胞中能夠使EGFR通路激活,隨后磷脂酶(phospholipase,PL)Cγ被激活,然后通過三磷酸肌醇和蘭尼堿受體從內(nèi)質(zhì)網(wǎng)釋放Ca2+,胞漿內(nèi)Ca2+濃度升高導(dǎo)致CaMK-Ⅱ和TGF-β活化激酶(TGF-β-activated kinase,TAK)1激活p38 MAPK和JNK,繼而使還原性輔酶Ⅱ(NADPH)激活,進(jìn)而發(fā)生氧化應(yīng)激,接著引發(fā)內(nèi)質(zhì)網(wǎng)應(yīng)激。在ERS的未折疊蛋白反應(yīng)中,蛋白激酶R樣內(nèi)質(zhì)網(wǎng)激酶(protein kinase R-like ER kinase,PERK)起到傳遞凋亡信號的作用,其可誘導(dǎo)ERS特異性轉(zhuǎn)錄因子CHOP表達(dá),進(jìn)而提高促凋亡蛋白Bim的表達(dá),線粒體攝取Ca2+導(dǎo)致線粒體Ca2+([Ca2+] m)濃度升高,最終啟動Casps依賴性線粒體凋亡途徑[74]。此外,人參皂苷Rg3在膽囊癌細(xì)胞會激活內(nèi)質(zhì)網(wǎng)上的Casp-12[75],而Casp-12可直接使Casp-9裂解,進(jìn)而激活Casp-3,最終導(dǎo)致細(xì)胞凋亡[76]。

3.4 誘導(dǎo)腫瘤細(xì)胞分化

目前對人參誘導(dǎo)腫瘤細(xì)胞分化的研究主要針對于白血病,人參皂苷可以促進(jìn)血紅蛋白的生成、白血病細(xì)胞衰老,并使白血病細(xì)胞向較成熟細(xì)胞分化。研究表明人參總皂苷通過促進(jìn)促紅細(xì)胞生成素受體(erythropoietin receptor,EpoR)的內(nèi)化誘導(dǎo)白血病細(xì)胞向紅系分化[77]。人參皂苷Rh2能通過上調(diào)TGF-β表達(dá)誘導(dǎo)白血病細(xì)胞分化[44],同時人參皂苷Rh4能夠誘導(dǎo)白血病細(xì)胞向粒系、單核系及巨核系分化[78],其作用可能與蛋白激酶C(protein kinase C,PKC)/ERK通路有關(guān)[79]。人參皂苷Rh2還能通過抑制TLMA活性誘導(dǎo)肝癌細(xì)胞趨向于正常細(xì)胞分化[80]。人參聚炔醇、人參多糖類成分也可以誘導(dǎo)腫瘤細(xì)胞分化。PNN通過活化細(xì)胞內(nèi)腺苷酸環(huán)化酶(cAMP)、PKC誘導(dǎo)白血病細(xì)胞向單核細(xì)胞分化[81],PND也能使細(xì)胞內(nèi)cAMP濃度升高而誘導(dǎo)膠質(zhì)瘤細(xì)胞分化[82],PND還能通過上調(diào)抑癌基因p21和pRb蛋白水平、下調(diào)細(xì)胞分化抑制因子(inhibitor of differentiation,Id)-1、2基因的表達(dá),顯著降低甲胎蛋白(α-fetoprotein,αFP)、白蛋白(albumin,Alb)的分泌,提高γ-谷氨酰轉(zhuǎn)移酶(γ-glutamyl transferase,γ-GT)、堿性磷酸酶(alkaline phosphatase,ALP)活性,從而引起肝癌細(xì)胞向類似于更成熟形式的肝細(xì)胞形態(tài)和超微結(jié)構(gòu)變化[83]。同時人參多糖在白血病細(xì)胞中也能使Id3基因的表達(dá)下調(diào)進(jìn)而促進(jìn)細(xì)胞分化[84]。逆轉(zhuǎn)腫瘤細(xì)胞向正常細(xì)胞分化是腫瘤治療的一種重要策略,人參有效成分能夠明顯誘導(dǎo)腫瘤細(xì)胞的分化,但其分子機(jī)制還不是很確切,有待進(jìn)一步深入探索以加深對誘導(dǎo)分化過程的認(rèn)識。

3.5 增強(qiáng)對腫瘤細(xì)胞免疫

研究表明人參皂苷、人參多糖類成分具有顯著的免疫調(diào)節(jié)作用,可增強(qiáng)機(jī)體對腫瘤細(xì)胞的免疫能力。人參皂苷可通過磷酸化ERK1/2和JNK提高TNF-α、白細(xì)胞介素(interleukin,IL)-6和IL-10水平,促進(jìn)CD14+單核細(xì)胞分化形成樹突狀細(xì)胞(dendritic cells,DCs)[85],而人參皂苷Rg1、Rh1等又能促進(jìn)DCs刺激T淋巴細(xì)胞增殖,增加IL-12的生成,從而增強(qiáng)DC-淋巴因子及PHA激活的殺傷細(xì)胞(LPAK)對人乳頭瘤細(xì)胞的殺傷能力[86],人參皂苷Rg1還能通過上調(diào)PI3K/Akt/mTOR通路在脂多糖激活的巨噬細(xì)胞(macrophage,MΦ)中調(diào)節(jié)先天免疫反應(yīng),顯著增加TNF-α蛋白翻譯水平[87]。人參皂苷Rg3則能刺激刀豆蛋白(concanavalin,Con)A誘導(dǎo)淋巴細(xì)胞增殖和Th1型細(xì)胞因子IL-2和γ干擾素(interferon,IFN-γ)水平增強(qiáng),從而顯著提高荷瘤小鼠細(xì)胞免疫[88]。此外人參皂苷Rg3不管是在免疫原性腫瘤如黑色素瘤或非免疫原性腫瘤如肺癌,都可誘導(dǎo)免疫原性腫瘤細(xì)胞死亡,同時增加鈣網(wǎng)蛋白(calreticulin,CRT)表達(dá)從而促進(jìn)DC識別、吞噬死亡腫瘤細(xì)胞,且人參皂苷Rg3誘導(dǎo)的細(xì)胞死亡會導(dǎo)致非免疫原性向免疫原性腫瘤細(xì)胞的轉(zhuǎn)化[89]。人參多糖對腫瘤細(xì)胞無直接殺傷作用,但研究發(fā)現(xiàn)人參中的酸性多糖可通過激活轉(zhuǎn)錄因子如NF-κB和AP-1及其上游信號酶如ERK和JNK而激活MΦ功能,從而產(chǎn)生細(xì)胞毒作用[90],且其吞噬細(xì)胞的吞噬活性增強(qiáng),同時通過激活T、CTL、B淋巴細(xì)胞、NK細(xì)胞以及增加外周血T淋巴細(xì)胞CD4+/CD8+值,誘導(dǎo)IL-1、2、6、12和TNF-α、IFN-γ、GM-CSF及NO水平升高[91-93],且ginsan通過釋放這些內(nèi)源性細(xì)胞因子由NK細(xì)胞和T細(xì)胞產(chǎn)生LAK細(xì)胞,并提高NK、CTL細(xì)胞殺傷活性[15, 22]。此外,人參多糖(RG-I-4)抑制半乳凝集素-3(galectin-3,Gal-3)蛋白表達(dá),從而抑制Gal-3與T細(xì)胞結(jié)合而避免其破壞T細(xì)胞免疫活性[94]。

3.6 抑制腫瘤的侵襲與轉(zhuǎn)移

大量的實(shí)驗(yàn)研究表明,人參有效成分對多種腫瘤的侵襲與轉(zhuǎn)移具有明顯的抑制作用。在腫瘤的侵襲與轉(zhuǎn)移過程中存在幾個重要環(huán)節(jié):破壞細(xì)胞外基質(zhì)(extracellular matrix,ECM)屏障、上皮細(xì)胞-間充質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)及腫瘤新生血管生成。人參有效成分可以作用于腫瘤細(xì)胞侵襲與轉(zhuǎn)移的這些關(guān)鍵過程,從而達(dá)到抗腫瘤侵襲與轉(zhuǎn)移的目的。

ECM由基底膜和細(xì)胞間基質(zhì)組成,基質(zhì)金屬蛋白酶(matrix metalloproteinases,MMPs)能夠降解ECM中各種蛋白成分,破壞防御腫瘤細(xì)胞侵襲的重要組織屏障,從而導(dǎo)致腫瘤細(xì)胞侵襲與轉(zhuǎn)移。研究表明,人參皂苷Rb2[95]、Rg1[96]、Rg3[97-98]、Rh1[99]、Rh2[100]、Rd[101]、CK[102]等可通過抑制MMP-1、2、3、7、9、13、14等基質(zhì)金屬蛋白酶在癌細(xì)胞中表達(dá)以避免其破壞ECM屏障,從而抑制癌細(xì)胞侵襲和轉(zhuǎn)移。而且人參皂苷Rh1、Rh2等能通過抑制MAPKs(包括ERK、JNK、p38 MAPK)和PI3K/Akt信號通路及其下游的轉(zhuǎn)錄因子NF-κB和AP-1的表達(dá),也能通過募集HDAC4進(jìn)而抑制AP-1[103],這對于抑制MMPs基因的表達(dá)及其轉(zhuǎn)錄因子活性發(fā)揮重要作用[99-100, 104],如人參皂苷Rg3可通過抑制p38 MAPK通路的激活抑制MMP-2的表達(dá)[105]。此外,研究也表明人參皂苷Rb2、Rg1不會影響MMPs特異性抑制因子TIMP1/2的表達(dá)[95-96]。

惡性腫瘤特別是上皮性腫瘤常發(fā)生EMT促進(jìn)腫瘤的侵襲和轉(zhuǎn)移。研究表明人參有效成分可以通過多種方式很好地阻止EMT。在許多腫瘤中巖藻糖基轉(zhuǎn)移酶Ⅳ(fucosyltransferase Ⅳ,F(xiàn)UT4)及其合成的腫瘤糖抗原Lewis Y(LeY)往往異常升高,這與EMT密切相關(guān)。研究發(fā)現(xiàn)人參皂苷Rg3等能夠下調(diào)肺癌細(xì)胞中FUT4的表達(dá)使LeY合成減少,進(jìn)而介導(dǎo)EGFR失活,從而阻斷MAPK和NF-κB信號通路,使E-鈣粘蛋白(cadherin,Cad)水平升高,而Snail蛋白、波形蛋白(vimentin,Vim)、N-Cad和纖連蛋白(fibronectin,F(xiàn)N)[16]水平下降即EMT被抑制[106]。轉(zhuǎn)化生長因子在多種腫瘤中高表達(dá),研究表明TGF-β1可以通過激活Smad2/3或p38 MAPK信號通路發(fā)生EMT,且Smad通路與腫瘤細(xì)胞抗失巢凋亡有關(guān)。研究顯示20(R)-人參皂苷Rg3能抑制TGF-β1在肺癌細(xì)胞的表達(dá),進(jìn)而抑制Smad2和p38 MAPK通路的激活,從而抑制EMT并促進(jìn)腫瘤失巢凋亡[105]。此外缺氧的微環(huán)境易造成EMT而促進(jìn)腫瘤的侵襲、轉(zhuǎn)移。研究發(fā)現(xiàn)在許多惡性腫瘤細(xì)胞中缺氧誘導(dǎo)因子(hypoxia inducible factor,HIF)-1α高表達(dá),而20(S)-人參皂苷Rg3在卵巢癌細(xì)胞可通過激活泛素-蛋白酶體途徑(ubiquitin proteasome pathway,UPP)使HIF-1α發(fā)生降解,進(jìn)而降低HIF-1α表達(dá),從而抑制HIF-1α引起缺氧以避免發(fā)生EMT[107]。除了人參皂苷,人參多糖和人參炔醇類成分也對EMT具有抑制作用。研究發(fā)現(xiàn)人參多糖PGPW1對人膀胱癌細(xì)胞具有較強(qiáng)抗轉(zhuǎn)移活性[14],其可通過下調(diào)Twist及AKR1C2、上調(diào)NF1表達(dá)阻斷EMT[108],從而抑制腫瘤細(xì)胞遷移和侵襲。PNN也能上調(diào)E-Cad、下調(diào)Vim表達(dá)從而抑制胰腺癌細(xì)胞遷移[32]。此外,MMP-9的過表達(dá)可直接誘導(dǎo)EMT,但需要聯(lián)合轉(zhuǎn)錄因子Snail的表達(dá)[109],而研究表明人參皂苷Rg3[98, 106]、PNN[32]對MMP-9、Snail的表達(dá)均有抑制作用,從而可阻斷EMT。

抑制腫瘤新生血管生成在抗腫瘤侵襲、轉(zhuǎn)移中起到關(guān)鍵性作用。新生血管的生成涉及一些血管活性生長因子如血管內(nèi)皮生長因子(vascular endothelial growth factors,VEGFs)、堿性成纖維細(xì)胞生長因子(basic fibroblast growth factor,bFGF)、ephrin(Eph)B2等。研究表明人參皂苷等成分能夠通過多種途徑調(diào)控這些新生血管形成因子。VEGF是一個關(guān)鍵的促新生血管生成因子,人參皂苷Rg3可通過抑制p38/ERK信號下調(diào)VEGF(如VEGF-A、B、C等[17])的表達(dá)[104],還通過抑制缺氧誘導(dǎo)的多種信號包括HIF-1α、COX-2、NF-κB、STAT3、ERK1/2和JNK下調(diào)癌細(xì)胞中VEGF的表達(dá)[110];同時人參皂苷Rh2通過增加多形性膠質(zhì)母細(xì)胞瘤中miR-497水平進(jìn)而抑制VEGF-A mRNA翻譯[111]。人參皂苷CK在人臍靜脈內(nèi)皮細(xì)胞能夠抑制鞘氨醇激酶(sphingosine kinase,SphK)1的活性及表達(dá),進(jìn)而抑制SphK1催化Sph生成鞘氨醇-1-磷酸(sphingosine 1-phosphate,S1P),S1P生成的減少導(dǎo)致p38 MAPK信號受抑制,從而減少內(nèi)皮細(xì)胞VEGF表達(dá)而抑制新生血管生成[62, 112]。此外MMPs也與VEGF表達(dá)有一定聯(lián)系,如MMP-2的表達(dá)受抑制可通過抑制PI3K/Akt信號抑制轉(zhuǎn)錄因子HIF-1α的表達(dá),進(jìn)而抑制VEGF的表達(dá)[113]。除了VEGF,人參皂苷也能抑制bFGF、EphB2等其他促新生血管生成因子的表達(dá)。20(R)-人參皂苷Rg3能顯著抑制bFGF誘導(dǎo)的新生血管的形成[114],能通過下調(diào)血管內(nèi)皮鈣黏蛋白(VE-cadherin,VE-Cad)、上皮細(xì)胞激酶(eithelial cell kinaspe,EphA2)的表達(dá)有效抑制胰腺癌血管生成擬態(tài)的形成[98],20(R)-人參皂苷Rg3也能通過miRNA-520h的過表達(dá)抑制新型促血管生成因子EphB2及其受體EphB4表達(dá)[115],還可能通過降低血清IGF-1水平[38, 116],從而抑制腫瘤血管生成。人參皂苷還能促進(jìn)抗血管新生因子色素上皮衍生因子(pigment epithelium derived factor,PEDF)的表達(dá)。研究顯示人參皂苷Rb1能增加PEDF的蛋白表達(dá)、轉(zhuǎn)錄和分泌,并通過雌激素受體(estrogen receptor,ER)-β激活PEDF,介導(dǎo)抑制內(nèi)皮細(xì)胞管狀結(jié)構(gòu)的形成[117]。內(nèi)皮祖細(xì)胞(endothelial progenitor cells,EPCs)在體內(nèi)能夠分化成有功能的內(nèi)皮細(xì)胞,參與缺血組織的血管新生及損傷血管的再內(nèi)皮化。研究發(fā)現(xiàn)人參Rg3能夠抑制EPCs從骨髓微環(huán)境動員到外周循環(huán)[104],且通過抑制VEGF依賴性Akt/eNOS信號抑制EPCs的分化[118],從而抑制損傷血管的修復(fù)與新生血管的形成。在血管生成過程中細(xì)胞黏附分子整合素(integrin,Int)也起重要作用,其可通過調(diào)節(jié)內(nèi)皮細(xì)胞的黏附和遷移能力參與血管的形成。研究發(fā)現(xiàn)人參皂苷Rp1、Rg3等能抑制黑色素瘤細(xì)胞的轉(zhuǎn)移性肺轉(zhuǎn)移,可能的機(jī)制是其抑制Intβ1的表達(dá)顯著抑制內(nèi)皮細(xì)胞黏附與遷移,從而抑制血管生成[119]。人參皂苷Rh2還能通過下調(diào)細(xì)胞間連接黏附分子(junctional adhesion molecule,JAM)1、2在腫瘤細(xì)胞的表達(dá),抑制腫瘤組織血管生成[120]。

腫瘤細(xì)胞的侵襲、遷移還與趨化因子密切相關(guān),趨化因子CXCL12及其受體CXCR4在癌癥的侵襲和遷移中發(fā)揮重要作用。研究表明人參皂苷CK對CXCL12誘導(dǎo)膠質(zhì)瘤細(xì)胞的遷移可通過抑制PKCα、ERK1/2的激活而抑制其受體CXCR4的表達(dá),從而抑制膠質(zhì)瘤細(xì)胞的遷移[102],同時人參皂苷Rg3也能抑制乳腺癌細(xì)胞中CXCR4表達(dá)[121]。此外,多種人腫瘤細(xì)胞中表達(dá)水通道蛋白(aquaporins,AQPs),其可參與腫瘤細(xì)胞的遷移。研究發(fā)現(xiàn)人參皂苷Rg3在前列腺癌細(xì)胞中通過激活p38 MAPK信號可使AQP1表達(dá)下調(diào),從而抑制腫瘤細(xì)胞遷移[122]。人參多糖(RG-I-4)還能抑制Gal-3蛋白介導(dǎo)的腫瘤細(xì)胞黏附聚集,進(jìn)而抑制細(xì)胞遷移[94]。

4 人參有效成分抗腫瘤作用的構(gòu)效關(guān)系4.1 人參皂苷抗腫瘤的構(gòu)效關(guān)系

人參皂苷及其代謝產(chǎn)物的化學(xué)結(jié)構(gòu)與其抗腫瘤功能相關(guān),研究表明PDS一般比PTS抗腫瘤活性強(qiáng)[24, 27];人參皂苷的糖分子數(shù)目會影響其抗腫瘤效果,糖分子越少其抗腫瘤活性可能越好[24],如人參皂苷Rh1抗癌活性強(qiáng)于其前體Rg1,PPD抗腫瘤效果優(yōu)于人參皂苷Rg3、Rh2等,原因可能是一方面糖分子越少其細(xì)胞毒性作用越大[24],另一方面人參皂苷和多糖因其親水性不易通過腸道被人體吸收,而極性小或非極性則易被人體吸收[123];人參皂苷的立體選擇性也會影響抗癌活性,反式人參皂苷或皂苷元的抗腫瘤活性優(yōu)于其對應(yīng)的順式異構(gòu)體[24, 27],如20(S)-PPD和20(S)-人參皂苷Rg3、Rh2的抗癌活性分別高于20(R)-PPD和20(R)-人參皂苷Rg3、Rh2[27, 124]。當(dāng)然上述的構(gòu)效關(guān)系并不是絕對的,如由人參三醇型人參皂苷代謝生成的原人參三醇雖然不含糖分子易被人體吸收,但是從目前的研究結(jié)果來看其并沒有明顯的抗癌活性;也有研究顯示20 (R)-人參皂苷Rg3比20(S)-Rg3對提高荷瘤宿主的細(xì)胞免疫功能更強(qiáng)[88]。

4.2 人參多糖抗腫瘤的構(gòu)效關(guān)系

人參多糖也具有一定的構(gòu)效關(guān)系。人參多糖結(jié)構(gòu)多樣,主要含有中性的淀粉樣葡聚糖和酸性的果膠。對人參多糖進(jìn)行系統(tǒng)分級,可將其分為4種結(jié)構(gòu)類型的多糖:淀粉樣葡聚糖(WGPN、WGPA-N)、同型半乳糖醛酸聚糖(HG型果膠:WGPA-1-HG~4-HG)、阿拉伯半乳聚糖(AG型果膠:WGPA-1-RG、2-RG)和I型鼠李糖半乳糖醛酸聚糖(RG-I型果膠:WGPA-3-RG、4-RG)[125]。研究表明富含HG結(jié)構(gòu)域的人參果膠對結(jié)腸癌細(xì)胞具有明顯抗增殖和誘導(dǎo)細(xì)胞周期阻滯于G2/M期作用,同時富含HG、RG-I及只富含HG型果膠對肝癌細(xì)胞增殖具有顯著抑制作用,而淀粉樣葡聚糖和AG型果膠對這2種腫瘤細(xì)胞均未表現(xiàn)出抑制增殖作用[125-126]。富含HG結(jié)構(gòu)域的人參果膠也能夠抑制成纖維細(xì)胞遷移,富含HG、RG-I果膠其抑制遷移作用稍強(qiáng)于只富含HG的果膠,而淀粉樣葡聚糖和AG型果膠對細(xì)胞遷移的抑制作用較小,且人參果膠多糖的這種抑制作用與GalA量(HG結(jié)構(gòu)域)和Rha量(RG-I結(jié)構(gòu)域)有關(guān)[127]。因此,酸性人參多糖的抗腫瘤活性要明顯高于中性多糖。此外,人參果膠(RG-I-4)與Gal-3相互作用的構(gòu)效關(guān)系研究表明多糖骨架上高Gal量、高Gal/Ara比例、AG-I型側(cè)鏈和側(cè)鏈總數(shù)多對發(fā)揮抗腫瘤作用起關(guān)鍵作用[94],且RG-I型果膠的AG-I型側(cè)鏈中半乳聚糖側(cè)鏈對發(fā)揮抗腫瘤作用是必不可少的[94],而AG-Ⅱ型側(cè)鏈中阿拉伯半乳聚糖側(cè)鏈?zhǔn)潜夭豢缮俚腫128]。因此構(gòu)成多糖分子骨架主鏈、側(cè)鏈的單糖組成、含量和連接方式以及側(cè)鏈數(shù)目是影響人參多糖抗腫瘤活性的重要因素。

4.3 人參炔醇抗腫瘤的構(gòu)效關(guān)系

人參中聚乙炔醇類成分雖然量較低,但PND、PNN、PNT等已被證明具有抗腫瘤活性,其中PND具有較強(qiáng)的細(xì)胞毒作用,對腫瘤細(xì)胞抑制作用最強(qiáng)。研究表明低質(zhì)量濃度(≤12.5 μg/mL)的人參總?cè)泊季哂蟹羌?xì)胞毒介導(dǎo)的生長抑制效應(yīng),而高質(zhì)量濃度(≥25 μg/mL)則主要表現(xiàn)為直接細(xì)胞毒作用,其細(xì)胞毒性大小可能與其結(jié)構(gòu)式中C-9和C-10的化學(xué)結(jié)構(gòu)有關(guān)[129],但目前確切的結(jié)構(gòu)與功效關(guān)系還不清楚。研究發(fā)現(xiàn)在絞股藍(lán)總皂苷中具有環(huán)氧結(jié)構(gòu)的絞股藍(lán)皂苷對肝癌細(xì)胞增殖的抑制作用是最強(qiáng)的[130],提示環(huán)氧結(jié)構(gòu)可能是一個重要的毒性活性中心。因此,可以推測PND抗腫瘤活性高于PNN、PNT的可能原因是PND結(jié)構(gòu)中有環(huán)氧基團(tuán)的存在。

5 結(jié)語與展望

現(xiàn)有研究結(jié)果表明人參具有顯著的抗腫瘤作用,其藥效物質(zhì)基礎(chǔ)為人參皂苷及其腸道菌群代謝產(chǎn)物、人參多糖和人參炔醇,這3類有效成分對多種類型腫瘤的發(fā)生、發(fā)展及侵襲轉(zhuǎn)移均有抑制作用,并都具有一定的構(gòu)效關(guān)系及作用特點(diǎn),具體情況見表 1。

表 1 人參抗腫瘤作用的有效成分及其抗腫瘤類型、構(gòu)效關(guān)系、特點(diǎn) Table 1 Effective components with antitumor effect of P. ginseng and their antitumor types, structure activity relationship, and characteristics

從表 1中可看出人參的有效成分非常復(fù)雜,其主要成分人參皂苷及其在人體腸道菌群的代謝產(chǎn)物可以對抗大部分常見腫瘤。目前已經(jīng)從人參中提取分離出至少40種以上的單體人參皂苷,而目前研究結(jié)果顯示接近1/2的單體皂苷具有明確抗腫瘤作用,其他單體人參皂苷雖然沒有數(shù)據(jù)表明具有抗腫瘤活性,但可能也具有潛在的抗腫瘤活性,這需要進(jìn)一步擴(kuò)展研究才能確定。

目前研究已證明人參中3類有效成分都能誘導(dǎo)腫瘤細(xì)胞周期阻滯、凋亡及分化,抑制腫瘤細(xì)胞增殖及侵襲與轉(zhuǎn)移,人參皂苷和人參多糖特別是人參多糖還能通過增強(qiáng)對腫瘤細(xì)胞免疫力發(fā)揮抗腫瘤作用,而人參炔醇類成分不具有免疫調(diào)節(jié)功能,但是PND等可以通過直接細(xì)胞毒作用殺死腫瘤細(xì)胞。除了這六大作用外,人參皂苷等化學(xué)成分還能夠誘導(dǎo)腫瘤細(xì)胞程序性壞死[131]、降低腫瘤細(xì)胞的多藥耐藥性、促進(jìn)腫瘤細(xì)胞或腫瘤干細(xì)胞自噬[132-133],同時又能抑制抗腫瘤藥(如阿霉素)治療引起的自噬,從而增強(qiáng)其誘導(dǎo)腫瘤細(xì)胞死亡的敏感性[134]。但是需要特別指出的是,也有研究表明人參皂苷Rg3、Rh2[124]、Rk1[135]在誘導(dǎo)肝癌細(xì)胞凋亡的時候也會引起細(xì)胞自噬而抑制細(xì)胞凋亡,這是不利于抗腫瘤作用發(fā)揮的??傊?,目前對人參有效成分尤其是單體人參皂苷抗腫瘤的作用機(jī)制研究已經(jīng)取得了較大進(jìn)展,其分子機(jī)制主要涉及對諸多相關(guān)基因、蛋白、蛋白酶、免疫細(xì)胞、細(xì)胞因子及相關(guān)信號通路等的調(diào)控與表達(dá),具體見表 2。

表 2 人參抗腫瘤作用分子機(jī)制 Table 2 Molecular mechanisms of antitumor effect of P. ginseng

從表 2可知,人參有效成分可以調(diào)控很多相關(guān)信號通路,主要包括PI3K/Akt/mTOR、MAPKs(ERK、JNK、p38 MAPK)、JAK/STAT、Wnt/β-catenin、AMPK、MEK、EGFR、NF-κB、TGF-β等。人參皂苷等成分能夠直接或間接地使這些通路大多數(shù)被抑制,而少數(shù)被激活,從而作用于信號靶點(diǎn)發(fā)揮抗腫瘤作用。人參皂苷等成分也能雙向調(diào)節(jié)某些信號通路,如人參皂苷Rg3既可通過抑制p38 MAPK通路激活而抑制MMP-2的表達(dá),又可激活p38 MAPK信號而使AQP1表達(dá)下調(diào),其目的都是抑制腫瘤細(xì)胞的侵襲和轉(zhuǎn)移。

大量的實(shí)驗(yàn)數(shù)據(jù)已經(jīng)證明人參具有確切的抗腫瘤作用,其藥效物質(zhì)基礎(chǔ)、分子作用機(jī)制也已基本明確,但也存在一些缺陷與不足。目前的研究結(jié)果大多是基于體外細(xì)胞實(shí)驗(yàn)也有少數(shù)是通過基因芯片技術(shù)手段得出的結(jié)論,而體內(nèi)動物實(shí)驗(yàn)數(shù)據(jù)相對較少。以人參中性淀粉樣葡聚糖來說,其由于具有較強(qiáng)的免疫調(diào)節(jié)作用而在體內(nèi)發(fā)揮較好的抗腫瘤活性,但在體外實(shí)驗(yàn)發(fā)現(xiàn)其活性很弱。同樣,在體外活性好但在體內(nèi)不一定好,所以對于藥效物質(zhì)基礎(chǔ)甚至是分子機(jī)制的研究要注重體內(nèi)外結(jié)合進(jìn)行實(shí)驗(yàn)研究。

近年來利用基因芯片技術(shù)探討藥物的分子作用機(jī)制是一個新的手段,如An等[136]采用miRNA微陣列分析發(fā)現(xiàn)人參皂苷Rh2在非小細(xì)胞肺癌使44個miRNAs表達(dá)上調(diào)和24個miRNAs表達(dá)下調(diào),這些miRNAs表達(dá)的變化涉及血管生成、細(xì)胞凋亡和細(xì)胞增殖。但人參皂苷對這些miRNAs及其基因靶點(diǎn)表達(dá)的調(diào)控需結(jié)合體內(nèi)外實(shí)驗(yàn)數(shù)據(jù)才能反映出真實(shí)的體內(nèi)變化過程。目前人參多糖、人參炔醇的抗腫瘤活性及其分子機(jī)制研究也比較少,如Jiao等[137]從人參中分離得到RG-I型果膠GPR-1、GPS-1及HG型果膠GPW-2、GPR-2和GPS-2,但目前尚未有相關(guān)抗腫瘤活性的報道。

此外,也存在一些問題,如人參皂苷對細(xì)胞自噬的多重影響問題等。因此在今后的深入研究和開發(fā)中,亟需完善以下幾個方面:(1)利用現(xiàn)代分子生物學(xué)技術(shù)如基因芯片技術(shù)、分子標(biāo)記技術(shù)等對人參有效成分的抗腫瘤作用的分子作用機(jī)制深入探討,并進(jìn)一步通過體內(nèi)實(shí)驗(yàn)方法進(jìn)行驗(yàn)證;(2)進(jìn)一步研究人參多糖與人參炔醇類成分的抗腫瘤作用及其分子機(jī)制和構(gòu)效關(guān)系;(3)研究人參抗腫瘤作用涉及的相關(guān)信號轉(zhuǎn)導(dǎo)通路之間的聯(lián)系;(4)擴(kuò)展基于單體化合物的人參抗腫瘤活性物質(zhì)的篩選;(5)進(jìn)行各種有效成分的抗腫瘤效果的對比研究以優(yōu)選出最佳的抗某些/種腫瘤的活性成分,并對不同有效成分進(jìn)行組合優(yōu)化研究;(6)研究人參皂苷等單體成分的體內(nèi)代謝過程和變化以及如何調(diào)控這些有效成分在人體內(nèi)的定向轉(zhuǎn)化,以提高抗腫瘤效果。人參中富含抗腫瘤活性成分,目前已經(jīng)有單體人參皂苷Rg3開發(fā)成為中藥1類新藥用于多種癌癥的輔助治療,將來有望更多的人參活性成分為臨床治療各種腫瘤提供安全有效的天然藥物及制劑。

參考文獻(xiàn)

[1]馮彥. 人參藥理作用及臨床應(yīng)用研究進(jìn)展[J].中醫(yī)臨床研究, 2013, 5(6):121–122.[2]黎陽, 張鐵軍, 劉素香, 等. 人參化學(xué)成分和藥理研究進(jìn)展[J].中草藥, 2009, 40(1):164–166.[3]楊秀偉. 人參中三萜類化學(xué)成分的研究[J].中國現(xiàn)代中藥, 2016, 18(1):7–15.[4]楊秀偉. 人參化學(xué)成分的藥物代謝動力學(xué)研究[J].中國現(xiàn)代中藥, 2016, 18(1):16–35.[5]Fu Y, Yin Z, Wu L, et al. Fermentation of ginseng extracts by Penicillium simplicissimum GS33 and anti-ovarian cancer activity of fermented products[J].World J Microbiol Biotechnol, 2014, 30(3): 1019–1025.DOI:10.1007/s11274-013-1520-0[6]Jin Y, Jung S Y, Kim Y J, et al. Microbial deglycosylation and ketonization of ginsenoside by Cladosporium cladosporioide and their anticancer activity[J].Antonie Van Leeuwenhoek, 2016, 109(2): 179–185.DOI:10.1007/s10482-015-0619-8[7]Xie J T, Du G J, McEntee E, et al. Effects of triterpenoid glycosides from fresh ginseng berry on SW480 human colorectal cancer cell line[J].Cancer Res Treat, 2011, 43(1): 49–55.DOI:10.4143/crt.2011.43.1.49[8]Lee D G, Lee A Y, Kim K T, et al. Novel dammarane-type triterpene saponins from Panax ginseng root[J].Chem Pharm Bull, 2015, 63(11): 927–934.DOI:10.1248/cpb.c15-00302[9]Shangguan W J, Li H, Zhang Y H. Induction of G2/M phase cell cycle arrest and apoptosis by ginsenoside Rf in human osteosarcoma MG63 cells through the mitochondrial pathway[J].Oncol Rep, 2014, 31(1): 305–313.[10]Shin J Y, Lee J M, Shin H S, et al. Anti-cancer effect of ginsenoside F2 against glioblastoma multiforme in xenograft model in SD rats[J].J Ginseng Res, 2012, 36(1): 86–92.DOI:10.5142/jgr.2012.36.1.86[11]Zhao C, Su G, Wang X, et al. Antitumor activity of ginseng sapogenins, 25-OH-PPD and 25-OCH3-PPD, on gastric cancer cells[J].Biotechnol Lett, 2016, 38(1): 43–50.DOI:10.1007/s10529-015-1964-4[12]Wang Y, Huang M, Sun R, et al. Extraction, characterization of a ginseng fruits polysaccharide and its immune modulating activities in rats with Lewis lung carcinoma[J].Carbohydr Polym, 2015, 127: 215–221.DOI:10.1016/j.carbpol.2015.03.070[13]Li C, Tian Z N, Cai J P, et al. Panax ginseng polysaccharide induces apoptosis by targeting Twist/AKR1C2/NF-1 pathway in human gastric cancer[J].Carbohydr Polym, 2014, 102(1): 103–109.[14]Li C, Cai J, Geng J, et al. Purification, characterization and anticancer activity of a polysaccharide from Panax ginseng[J].Int J Biol Macromol, 2012, 51(5): 968–973.DOI:10.1016/j.ijbiomac.2012.06.031[15]Kim B, Choi S, Suh H, et al. Bitterness reduction and enzymatic transformation of ginsenosides from korean red ginseng (Panax ginseng) extract[J].J Food Biochem, 2011, 35(4): 1267–1282.DOI:10.1111/jfbc.2011.35.issue-4[16]Zhang K, Li Y. Effects of ginsenoside compound K combined with cisplatin on the proliferation, apoptosis and epithelial mesenchymal transition in MCF-7 cells of human breast cancer[J].Pharm Biol, 2016, 54(4): 561–568.DOI:10.3109/13880209.2015.1101142[17]Zhang Y, Liu Q Z, Xing S P, et al. Inhibiting effect of Endostar combined with ginsenoside Rg3 on breast cancer tumor growth in tumor-bearing mice[J].Asian Pac J Trop Med, 2016, 9(2): 180–183.DOI:10.1016/j.apjtm.2016.01.010[18]陳哲京, 程駿, 黃穎鵬, 等. 術(shù)后采用人參皂甙Rg3聯(lián)合絲裂霉素加呋喃尿嘧啶方案對進(jìn)展期胃癌的療效[J].中華胃腸外科雜志, 2007, 10(1):64–66.[19]Ben-Eltriki M, Deb S, Adomat H, et al. Calcitriol and 20(S)-protopanaxadiol synergistically inhibit growth and induce apoptosis in human prostate cancer cells[J].J Steroid Biochem Mol Biol, 2016, 158: 207–219.DOI:10.1016/j.jsbmb.2015.12.002[20]Wang C Z, Zhang Z, Wan J Y, et al. Protopanaxadiol, an active ginseng metabolite, significantly enhances the effects of fluorouracil on colon cancer[J].Nutrients, 2015, 7(2): 799–814.DOI:10.3390/nu7020799[21]Shin H J, Kim Y S, Kwak Y S, et al. Enhancement of antitumor effects of paclitaxel (taxol) in combination with red ginseng acidic polysaccharide (RGAP)[J].Planta Med, 2004, 70(11): 1033–1038.DOI:10.1055/s-2004-832643[22]Kim K H, Lee Y S, Jung I S, et al. Acidic polysaccharide from Panax ginseng, ginsan, induces Th1 cell and macrophage cytokines and generates LAK cells in synergy with rIL-2[J].Planta Med, 1998, 64(2): 110–115.DOI:10.1055/s-2006-957385[23]Park J Y, Choi P, Kim H K, et al. Increase in apoptotic effect of Panax ginseng by microwave processing in human prostate cancer cells:in vitro and in vivo studies[J].J Ginseng Res, 2016, 40(1): 62–67.DOI:10.1016/j.jgr.2015.04.007[24]Quan K, Liu Q, Wan J Y, et al. Rapid preparation of rare ginsenosides by acid transformation and their structure-activity relationships against cancer cells[J].Sci Rep, 2015.DOI:10.1038/srep08598[25]Oh J, Jeon S B, Lee Y, et al. Fermented red ginseng extract inhibits cancer cell proliferation and viability[J].J Med Food, 2015, 18(4): 421–428.DOI:10.1089/jmf.2014.3248[26]孫娜, 徐鋼, 徐珊, 等. 人參炮制對其化學(xué)成分和藥理作用的影響[J].中國藥房, 2016, 27(6):857–859.[27]Wang C Z, Anderson S, Du W, et al. Red ginseng and cancer treatment[J].Chin J Nat Med, 2016, 14(1): 7–16.[28]He B C, Gao J L, Luo X, et al. Ginsenoside Rg3 inhibits colorectal tumor growth through the down-regulation of Wnt/ss-catenin signaling[J].Int J Oncol, 2011, 38(2): 437–445.[29]Lee S Y, Kim G T, Roh S H, et al. Proteomic analysis of the anti-cancer effect of 20S-ginsenoside Rg3 in human colon cancer cell lines[J].Biosci Biotechnol Biochem, 2009, 73(4): 811–816.DOI:10.1271/bbb.80637[30]Lee S Y, Kim G T, Roh S H, et al. Proteome changes related to the anti-cancer activity of HT29 cells by the treatment of ginsenoside Rd[J].Pharmazie, 2009, 64(4): 242–247.[31]Kim J Y, Lee K W, Kim S H, et al. Inhibitory effect of tumor cell proliferation and induction of G2/M cell cycle arrest by panaxytriol[J].Planta Med, 2002, 68(2): 119–122.DOI:10.1055/s-2002-20240[32]王穎, 朱海濤, 黃文斯, 等. 人參炔醇體外抑制人胰腺癌SW1990細(xì)胞遷移作用研究[J].中華腫瘤防治雜志, 2015, 22(21):1662–1666.[33]Shan X, Fu Y S, Aziz F, et al. Ginsenoside Rg3 inhibits melanoma cell proliferation through down-regulation of histone deacetylase 3(HDAC3) and increase of p53 acetylation[J].PLoS One, 2014.DOI:10.1371/journal.pone.0115401[34]Liu Z H, Li J, Xia J, et al. Ginsenoside 20(S)-Rh2 as potent natural histone deacetylase inhibitors suppressing the growth of human leukemia cells[J].Chem Biol Interact, 2015, 242: 227–234.DOI:10.1016/j.cbi.2015.10.014[35]Aziz F, Wang X, Liu J, et al. Ginsenoside Rg3 induces FUT4-mediated apoptosis in H. pylori CagA-treated gastric cancer cells by regulating SP1 and HSF1 expressions[J].Toxicol In Vitro, 2016, 31: 158–166.DOI:10.1016/j.tiv.2015.09.025[36]Li J, Liu T, Zhao L, et al. Ginsenoside 20(S)-Rg3 inhibits the Warburg effect through STAT3 pathways in ovarian cancer cells[J].Int J Oncol, 2015, 46(2): 775–781.[37]You Z M, Zhao L, Xia J, et al. Down-regulation of phosphoglucose isomerase/autocrine motility factor enhances gensenoside Rh2 pharmacological action on leukemia KG1alpha cells[J].Asian Pac J Cancer Prev, 2014, 15(3): 1099–1104.DOI:10.7314/APJCP.2014.15.3.1099[38]Li Y, Yang T, Li J, et al. Inhibition of multiple myeloma cell proliferation by ginsenoside Rg3 via reduction in the secretion of IGF-1[J].Mol Med Rep, 2016, 14(3): 2222–2230.[39]Kang J H, Song K H, Woo J K, et al. Ginsenoside Rp1 from Panax ginseng exhibits anti-cancer activity by down-regulation of the IGF-1R/Akt pathway in breast cancer cells[J].Plant Foods Hum Nutr, 2011, 66(3): 298–305.DOI:10.1007/s11130-011-0242-4[40]Chen W, Qiu Y. Ginsenoside Rh2 targets EGFR by up-regulation of miR-491 to enhance anti-tumor activity in hepatitis B virus-related hepatocellular carcinoma[J].Cell Biochem Biophys, 2015, 72(2): 325–331.DOI:10.1007/s12013-014-0456-9[41]Wu N, Wu G C, Hu R, et al. Ginsenoside Rh2 inhibits glioma cell proliferation by targeting microRNA-128[J].Acta Pharmacol Sin, 2011, 32(3): 345–353.DOI:10.1038/aps.2010.220[42]Park E H, Kim Y J, Yamabe N, et al. Stereospecific anticancer effects of ginsenoside Rg3 epimers isolated from heat-processed American ginseng on human gastric cancer cell[J].J Ginseng Res, 2014, 38(1): 22–27.DOI:10.1016/j.jgr.2013.11.007[43]Kim S J, Kim A K. Anti-breast cancer activity of fine black ginseng (Panax ginseng Meyer.) and ginsenoside Rg5[J].J Ginseng Res, 2015, 39(2): 125–134.DOI:10.1016/j.jgr.2014.09.003[44]Chung K S, Cho S H, Shin J S, et al. Ginsenoside Rh2 induces cell cycle arrest and differentiation in human leukemia cells by upregulating TGF-beta expression[J].Carcinogenesis, 2013, 34(2): 331–340.DOI:10.1093/carcin/bgs341[45]Cheng C C, Yang S M, Huang C Y, et al. Molecular mechanisms of ginsenoside Rh2-mediated G1 growth arrest and apoptosis in human lung adenocarcinoma A549 cells[J].Cancer Chemother Pharmacol, 2005, 55(6): 531–540.DOI:10.1007/s00280-004-0919-6[46]Choi S, Kim T W, Singh S V. Ginsenoside Rh2-mediated G1 phase cell cycle arrest in human breast cancer cells is caused by p15 Ink4B and p27 Kip1-dependent inhibition of cyclin-dependent kinases[J].Pharm Res, 2009, 26(10): 2280–2288.DOI:10.1007/s11095-009-9944-9[47]Zhang Z, Du G J, Wang C Z, et al. Compound K, a ginsenoside metabolite, inhibits colon cancer growth via multiple pathways including p53-p21 interactions[J].Int J Mol Sci, 2013, 14(2): 2980–2995.DOI:10.3390/ijms14022980[48]Wang W, Rayburn E R, Hao M, et al. Experimental therapy of prostate cancer with novel natural product anti-cancer ginsenosides[J].Prostate, 2008, 68(8): 809–819.DOI:10.1002/pros.v68:8[49]Guo X X, Li Y, Sun C, et al. p53-dependent Fas expression is critical for ginsenoside Rh2 triggered caspase-8 activation in HeLa cells[J].Protein Cell, 2014, 5(3): 224–234.DOI:10.1007/s13238-014-0027-2[50]Zhang Z, Li Z, Wu X, et al. TRAIL pathway is associated with inhibition of colon cancer by protopanaxadiol[J].J Pharmacol Sci, 2015, 127(1): 83–91.DOI:10.1016/j.jphs.2014.11.003[51]Lee J Y, Jung K H, Morgan M J, et al. Sensitization of TRAIL-induced cell death by 20(S)-ginsenoside Rg3 via CHOP-mediated DR5 upregulation in human hepatocellular carcinoma cells[J].Mol Cancer Ther, 2013, 12(3): 274–285.DOI:10.1158/1535-7163.MCT-12-0054[52]Kim J S, Joo E J, Chun J, et al. Induction of apoptosis by ginsenoside Rk1 in SK-MEL-2-human melanoma[J].Arch Pharm Res, 2012, 35(4): 717–722.DOI:10.1007/s12272-012-0416-0[53]Lee D G, Jang S I, Kim Y R, et al. Anti-proliferative effects of ginsenosides extracted from mountain ginseng on lung cancer[J].Chin J Integr Med, 2016, 22(5): 344–352.DOI:10.1007/s11655-014-1789-8[54]Wang J H, Nao J F, Zhang M, et al. 20(S)-ginsenoside Rg3 promotes apoptosis in human ovarian cancer HO-8910 cells through PI3K/Akt and XIAP pathways[J].Tumour Biol, 2014, 35(12): 11985–11994.DOI:10.1007/s13277-014-2497-5[55]Tang X P, Tang G D, Fang C Y, et al. Effects of ginsenoside Rh2 on growth and migration of pancreatic cancer cells[J].World J Gastroenterol, 2013, 19(10): 1582–1592.DOI:10.3748/wjg.v19.i10.1582[56]Park S, Lee H J, Jeong S J, et al. Inhibition of JAK1/STAT3 signaling mediates compound K-induced apoptosis in human multiple myeloma U266 cells[J].Food Chem Toxicol, 2011, 49(6): 1367–1372.DOI:10.1016/j.fct.2011.03.021[57]Jian J, Hu Z F, Huang Y. Effect of ginsenoside Rg3 on Pim-3 and Bad proteins in human pancreatic cancer cell line PANC-1[J].Chin J Cancer, 2009, 28(5): 461–465.[58]Kim B M, Kim D H, Park J H, et al. Ginsenoside Rg3 inhibits constitutive activation of NF-kappaB signaling in human breast cancer (MDA-MB-231) cells:ERK and Akt as potential upstream targets[J].J Cancer Prev, 2014, 19(1): 23–30.DOI:10.15430/JCP.2014.19.1.23[59]Wang X, Wang Y. Ginsenoside Rh2 mitigates pediatric leukemia through suppression of Bcl-2 in leukemia cells[J].Cell Physiol Biochem, 2015, 37(2): 641–650.DOI:10.1159/000430383[60]Kim Y J, Kwon H C, Ko H, et al. Anti-tumor activity of the ginsenoside Rk1 in human hepatocellular carcinoma cells through inhibition of telomerase activity and induction of apoptosis[J].Biol Pharm Bull, 2008, 31(5): 826–830.DOI:10.1248/bpb.31.826[61]Kim B J. Involvement of melastatin type transient receptor potential 7 channels in ginsenoside Rd-induced apoptosis in gastric and breast cancer cells[J].J Ginseng Res, 2013, 37(2): 201–209.DOI:10.5142/jgr.2013.37.201[62]Shin K O, Seo C H, Cho H H, et al. Ginsenoside compound K inhibits angiogenesis via regulation of sphingosine kinase-1 in human umbilical vein endothelial cells[J].Arch Pharm Res, 2014, 37(9): 1183–1192.DOI:10.1007/s12272-014-0340-6[63]Kim D Y, Park M W, Yuan H D, et al. Compound K induces apoptosis via CAMK-Ⅳ/AMPK pathways in HT-29 colon cancer cells[J].J Agric Food Chem, 2009, 57(22): 10573–10578.DOI:10.1021/jf902700h[64]Zhang Y L, Zhang R, Xu H L, et al. 20(S)-protopanaxadiol triggers mitochondrial-mediated apoptosis in human lung adenocarcinoma A549 cells via inhibiting the PI3K/Akt signaling pathway[J].Am J Chin Med, 2013, 41(5): 1137–1152.DOI:10.1142/S0192415X13500778[65]Li J, Wei Q, Zuo G W, et al. Ginsenoside Rg1 induces apoptosis through inhibition of the EpoR-mediated JAK2/STAT5 signalling pathway in the TF-1/Epo human leukemia cell line[J].Asian Pac J Cancer Prev, 2014, 15(6): 2453–2459.DOI:10.7314/APJCP.2014.15.6.2453[66]Choi Y J, Lee H J, Kang D W, et al. Ginsenoside Rg3 induces apoptosis in the U87MG human glioblastoma cell line through the MEK signaling pathway and reactive oxygen species[J].Oncol Rep, 2013, 30(3): 1362–1370.[67]Huang J, Peng K, Wang L, et al. Ginsenoside Rh2 inhibits proliferation and induces apoptosis in human leukemia cells via TNF-alpha signaling pathway[J].Acta Biochim Biophys Sin, 2016, 48(8): 750–755.DOI:10.1093/abbs/gmw049[68]Park E K, Lee E J, Lee S H, et al. Induction of apoptosis by the ginsenoside Rh2 by internalization of lipid rafts and caveolae and inactivation of Akt[J].Br J Pharmacol, 2010, 160(5): 1212–1223.DOI:10.1111/j.1476-5381.2010.00768.x[69]Mao Q, Zhang P H, Wang Q, et al. Ginsenoside F2 induces apoptosis in humor gastric carcinoma cells through reactive oxygen species-mitochondria pathway and modulation of ASK-1/JNK signaling cascade in vitro and in vivo[J].Phytomedicine, 2014, 21(4): 515–522.DOI:10.1016/j.phymed.2013.10.013[70]Choi K, Choi C. Proapoptotic ginsenosides compound K and Rh2 enhance Fas-induced cell death of human astrocytoma cells through distinct apoptotic signaling pathways[J].Cancer Res Treat, 2009, 41(1): 36–44.DOI:10.4143/crt.2009.41.1.36[71]Wang H, Jiang D, Liu J, et al. Compound K induces apoptosis of bladder cancer T24 cells via reactive oxygen species-mediated p38 MAPK pathway[J].Cancer Biother Radiopharm, 2013, 28(8): 607–614.DOI:10.1089/cbr.2012.1468[72]范家銘, 劉澤洪, 李靜, 等. 人參多糖介導(dǎo)Wnt/β-catenin信號轉(zhuǎn)導(dǎo)誘導(dǎo)人鼻咽癌細(xì)胞CNE-2的凋亡[J].中國中藥雜志, 2013, 38(19):3332–3337.[73]Law C K, Kwok H H, Poon P Y, et al. Ginsenoside compound K induces apoptosis in nasopharyngeal carcinoma cells via activation of apoptosis-inducing factor[J].Chin Med, 2014, 9(1): 1–11.DOI:10.1186/1749-8546-9-1[74]Kim H S, Lim J M, Kim J Y, et al. Panaxydol, a component of Panax ginseng, induces apoptosis in cancer cells through EGFR activation and ER stress and inhibits tumor growth in mouse models[J].Int J Cancer, 2016, 138(6): 1432–1441.DOI:10.1002/ijc.29879[75]Wu K, Li N, Sun H, et al. Endoplasmic reticulum stress activation mediates Ginseng Rg3-induced anti-gallbladder cancer cell activity[J].Biochem Biophys Res Commun, 2015, 466(3): 369–375.DOI:10.1016/j.bbrc.2015.09.030[76]Breckenridge D G, Germain M, Mathai J P, et al. Regulation of apoptosis by endoplasmic reticulum pathways[J].Oncogene, 2003, 22(53): 8608–8618.DOI:10.1038/sj.onc.1207108[77]Zuo G, Guan T, Chen D, et al. Total saponins of Panax ginseng induces K562 cell differentiation by promoting internalization of the erythropoietin receptor[J].Am J Chin Med, 2009, 37(4): 747–757.DOI:10.1142/S0192415X09007211[78]余瀟苓, 高瑞蘭, 尹利明, 等. 低極性人參皂苷Rh4對白血病細(xì)胞系K562細(xì)胞增殖抑制及誘導(dǎo)分化作用的研究[J].中華血液學(xué)雜志, 2015, 36(4):347–349.[79]Kim S H, Cho S S, Simkhada J R, et al. Enhancement of 1, 25-dihydroxyvitamin D3-and all-trans retinoic acid-induced HL-60 leukemia cell differentiation by Panax ginseng[J].Biosci Biotechnol Biochem, 2009, 73(5): 1048–1053.DOI:10.1271/bbb.80823[80]Zeng X L, Tu Z G. In vitro induction of differentiation by ginsenoside Rh2 in SMMC-7721 hepatocarcinoma cell line[J].Pharmacol Toxicol, 2003, 93(6): 275–283.DOI:10.1111/pto.2003.93.issue-6[81]王澤劍, 吳英理, 林琦, 等. 人參炔醇對HL-60細(xì)胞體外誘導(dǎo)分化作用的研究[J].中草藥, 2003, 34(8):736–738.[82]Hai J, Lin Q, Zhang H, et al. Cyclic AMP-dependent regulation of differentiation of rat C6 glioma cells by panaxydol[J].Neurol Res, 2009, 31(3): 274–279.DOI:10.1179/174313209X380919[83]Guo L, Song L, Wang Z, et al. Panaxydol inhibits the proliferation and induces the differentiation of human hepatocarcinoma cell line HepG2[J].Chem Biol Interact, 2009, 181(1): 138–143.DOI:10.1016/j.cbi.2009.04.015[84]李建平, 何軒, 姜蓉, 等. 人參多糖對K562細(xì)胞基因表達(dá)譜的影響[J].中草藥, 2011, 42(5):940–943.[85]Lee Y J, Son Y M, Gu M J, et al. Ginsenoside fractions regulate the action of monocytes and their differentiation into dendritic cells[J].J Ginseng Res, 2015, 39(1): 29–37.DOI:10.1016/j.jgr.2014.07.003[86]Wang Y, Hao Y, Lou J L, et al. Effect of ginsenoside Rg1 and Rh1 on the anti-tumor activity of dendritic cell[J].Chin J Pathophys, 2004, 20(10): 18–23.[87]Wang Y, Liu Y, Zhang X Y, et al. Ginsenoside Rg1 regulates innate immune responses in macrophages through differentially modulating the NF-kappaB and PI3K/Akt/mTOR pathways[J].Int Immunopharmacol, 2014, 23(1): 77–84.DOI:10.1016/j.intimp.2014.07.028[88]Wu R, Ru Q, Chen L, et al. Stereospecificity of ginsenoside Rg3 in the promotion of cellular immunity in hepatoma H22-bearing mice[J].J Food Sci, 2014, 79(7): H1430–H1435.DOI:10.1111/jfds.2014.79.issue-7[89]Son K J, Choi K R, Lee S J, et al. Immunogenic cell death induced by ginsenoside Rg3:significance in dendritic cell-based anti-tumor immunotherapy[J].Immune Netw, 2016, 16(1): 75–84.DOI:10.4110/in.2016.16.1.75[90]Byeon S E, Lee J, Kim J H, et al. Molecular mechanism of macrophage activation by red ginseng acidic polysaccharide from Korean red ginseng[J].Mediators Inflamm, 2012.DOI:10.1155/2012/732860[91]Song J Y, Han S K, Son E H, et al. Induction of secretory and tumoricidal activities in peritoneal macrophages by ginsan[J].Int Immunopharmacol, 2002, 2(7): 857–865.DOI:10.1016/S1567-5769(01)00211-9[92]Wang J, Zuo G, Li J, et al. Induction of tumoricidal activity in mouse peritoneal macrophages by ginseng polysaccharide[J].Int J Biol Macromol, 2010, 46(4): 389–395.DOI:10.1016/j.ijbiomac.2010.02.007[93]Zhou X, Shi H, Jiang G, et al. Antitumor activities of ginseng polysaccharide in C57BL/6 mice with Lewis lung carcinoma[J].Tumour Biol, 2014, 35(12): 12561–12566.DOI:10.1007/s13277-014-2576-7[94]Gao X G, Zhi Y, Sun L, et al. The inhibitory effects of a rhamnogalacturonan I (RG-I) domain from ginseng pectin on galectin-3 and its structure-activity relationship[J].J Biol Chem, 2013, 288(47): 33953–33965.DOI:10.1074/jbc.M113.482315[95]Fujimoto J, Sakaguchi H, Aoki I, et al. Inhibitory effect of ginsenoside-Rb2 on invasiveness of uterine endometrial cancer cells to the basement membrane[J].Eur J Gynaecol Oncol, 2001, 22(5): 339–341.[96]Li L, Wang Y, Qi B, et al. Suppression of PMA-induced tumor cell invasion and migration by ginsenoside Rg1 via the inhibition of NF-kappaB-dependent MMP-9 expression[J].Oncol Rep, 2014, 32(5): 1779–1786.[97]Lee S G, Kang Y J, Nam J O. Anti-metastasis effects of ginsenoside Rg3 in B16F10 cells[J].J Microbiol Biotechnol, 2015, 25(12): 1997–2006.DOI:10.4014/jmb.1506.06002[98]Guo J Q, Zheng Q H, Chen H, et al. Ginsenoside Rg3 inhibition of vasculogenic mimicry in pancreatic cancer through downregulation of VEcadherin/EphA2/MMP9/MMP2 expression[J].Int J Oncol, 2014, 45(3): 1065–1072.[99]Jung J S, Ahn J H, Le T K, et al. Protopanaxatriol ginsenoside Rh1 inhibits the expression of matrix metalloproteinases and the in vitro invasion/migration of human astroglioma cells[J].Neurochem Int, 2013, 63(2): 80–86.DOI:10.1016/j.neuint.2013.05.002[100]Kim S Y, Kim D H, Han S J, et al. Repression of matrix metalloproteinase gene expression by ginsenoside Rh2 in human astroglioma cells[J].Biochem Pharmacol, 2007, 74(11): 1642–1651.DOI:10.1016/j.bcp.2007.08.015[101]Yoon J H, Choi Y J, Cha S W, et al. Anti-metastatic effects of ginsenoside Rd via inactivation of MAPK signaling and induction of focal adhesion formation[J].Phytomedicine, 2012, 19(3/4): 284–292.[102]Kim H, Roh H S, Kim J E, et al. Compound K attenuates stromal cell-derived growth factor 1(SDF-1)-induced migration of C6 glioma cells[J].Nutr Res Pract, 2016, 10(3): 259–264.DOI:10.4162/nrp.2016.10.3.259[103]Shi Q, Li J, Feng Z, et al. Effect of ginsenoside Rh2 on the migratory ability of HepG2 liver carcinoma cells:recruiting histone deacetylase and inhibiting activator protein 1 transcription factors[J].Mol Med Rep, 2014, 10(4): 1779–1785.[104]Kim J W, Jung S Y, Kwon Y H, et al. Ginsenoside Rg3 attenuates tumor angiogenesis via inhibiting bioactivities of endothelial progenitor cells[J].Cancer Biol Ther, 2012, 13(7): 504–515.DOI:10.4161/cbt.19599[105]Kim Y J, Choi W I, Jeon B N, et al. Stereospecific effects of ginsenoside 20-Rg3 inhibits TGF-beta1-induced epithelial-mesenchymal transition and suppresses lung cancer migration, invasion and anoikis resistance[J].Toxicology, 2014, 322: 23–33.DOI:10.1016/j.tox.2014.04.002[106]Tian L, Shen D, Li X, et al. Ginsenoside Rg3 inhibits epithelial-mesenchymal transition (EMT) and invasion of lung cancer by down-regulating FUT4[J].Oncotarget, 2016, 7(2): 1619–1632.[107]Liu T, Zhao L, Zhang Y, et al. Ginsenoside 20(S)-Rg3 targets HIF-1alpha to block hypoxia-induced epithelial-mesenchymal transition in ovarian cancer cells[J].PLoS One, 2014.DOI:10.1371/journal.pone.0103887[108]Cai J P, Wu Y J, Li C, et al. Panax ginseng polysaccharide suppresses metastasis via modulating Twist expression in gastric cancer[J].Int J Biol Macromol, 2013, 57(6): 22–25.[109]Lin C Y, Tsai P H, Kandaswami C C, et al. Matrix metalloproteinase-9 cooperates with transcription factor Snail to induce epithelial-mesenchymal transition[J].Cancer Sci, 2011, 102(4): 815–827.DOI:10.1111/cas.2011.102.issue-4[110]Chen Q J, Zhang M Z, Wang L X. Gensenoside Rg3 inhibits hypoxia-induced VEGF expression in human cancer cells[J].Cell Physiol Biochem, 2010, 26(6): 849–858.DOI:10.1159/000323994[111]Li S, Gao Y, Ma W, et al. Ginsenoside Rh2 inhibits invasiveness of glioblastoma through modulation of VEGF-A[J].Tumour Biol, 2015.DOI:10.1007/s13277-015-3759-6[112]Sun H Y, Wei S P, Xu R C, et al. Sphingosine-1-phosphate induces human endothelial VEGF and MMP-2 production via transcription factor ZNF580:novel insights into angiogenesis[J].Biochem Biophys Res Commun, 2010, 395(3): 361–366.DOI:10.1016/j.bbrc.2010.04.019[113]Chetty C, Lakka S S, Bhoopathi P, et al. MMP-2 alters VEGF expression via alphaVbeta3 integrin-mediated PI3K/AKT signaling in A549 lung cancer cells[J].Int J Cancer, 2010, 127(5): 1081–1095.[114]Yue P Y, Wong D Y, Wu P K, et al. The angiosuppressive effects of 20(R)-ginsenoside Rg3[J].Biochem Pharmacol, 2006, 72(4): 437–445.DOI:10.1016/j.bcp.2006.04.034[115]Keung M H, Chan L S, Kwok H H, et al. Role of microRNA-520h in 20(R)-ginsenoside-Rg3-mediated angiosuppression[J].J Ginseng Res, 2016, 40(2): 151–159.DOI:10.1016/j.jgr.2015.07.002[116]唐泓波, 任玉萍, 張軍, 等. 應(yīng)用IGF-1基因缺失小鼠研究IGF-1與乳腺腫瘤血管生成的關(guān)系[J].癌癥, 2007, 26(11):1215–1220.[117]Leung K W, Cheung L W, Pon Y L, et al. Ginsenoside Rb1 inhibits tube-like structure formation of endothelial cells by regulating pigment epithelium-derived factor through the oestrogen beta receptor[J].Br J Pharmacol, 2007, 152(2): 207–215.DOI:10.1038/sj.bjp.0707359[118]Kim J W, Jung S Y, Kwon Y H, et al. Ginsenoside Rg3 inhibits endothelial progenitor cell differentiation through attenuation of VEGF-dependent Akt/eNOS signaling[J].Phytother Res, 2012, 26(9): 1286–1293.DOI:10.1002/ptr.v26.9[119]Park T Y, Park M H, Shin W C, et al. Anti-metastatic potential of ginsenoside Rp1, a novel ginsenoside derivative[J].Biol Pharm Bull, 2008, 31(9): 1802–1805.DOI:10.1248/bpb.31.1802[120]王強(qiáng), 吳美清, 趙玲輝, 等. 人參皂苷Rh2對小鼠移植瘤生長及對細(xì)胞間連接黏附分子表達(dá)的影響[J].中國中藥雜志, 2008, 33(18):2116–2119.[121]Chen X P, Qian L L, Jiang H, et al. Ginsenoside Rg3 inhibits CXCR4 expression and related migrations in a breast cancer cell line[J].Int J Clin Oncol, 2011, 16(5): 519–523.DOI:10.1007/s10147-011-0222-6[122]Pan X Y, Guo H, Han J, et al. Ginsenoside Rg3 attenuates cell migration via inhibition of aquaporin 1 expression in PC-3M prostate cancer cells[J].Eur J Pharmacol, 2012, 683(1/3): 27–34.[123]Ha Y W, Ahn K S, Lee J C, et al. Validated quantification for selective cellular uptake of ginsenosides on MCF-7 human breast cancer cells by liquid chromatography-mass spectrometry[J].Anal Bioanal Chem, 2010, 396(8): 3017–3025.DOI:10.1007/s00216-010-3515-0[124]Cheong J H, Kim H, Hong M J, et al. Stereoisomer-specific anticancer activities of ginsenoside Rg3 and Rh2 in HepG2 cells:disparity in cytotoxicity and autophagy-inducing effects due to 20(S)-epimers[J].Biol Pharm Bull, 2015, 38(1): 102–108.DOI:10.1248/bpb.b14-00603[125]周義發(fā), 臺桂花, 范玉瑩, 等.人參多糖結(jié)構(gòu)與其抗腫瘤活性的關(guān)系[A]//中國吉林國際人參大會論文集[C].長春:長春中醫(yī)藥大學(xué), 2012.[126]Cheng H, Li S, Fan Y, et al. Comparative studies of the antiproliferative effects of ginseng polysaccharides on HT-29 human colon cancer cells[J].Med Oncol, 2011, 28(1): 175–181.DOI:10.1007/s12032-010-9449-8[127]Fan Y, Cheng H, Li S, et al. Relationship of the inhibition of cell migration with the structure of ginseng pectic polysaccharides[J].Carbohydr Polym, 2010, 81(2): 340–347.DOI:10.1016/j.carbpol.2010.02.028[128]Zhang X, Li S, Sun L, et al. Further analysis of the structure and immunological activity of an RG-I type pectin from Panax ginseng[J].Carbohydr Polym, 2012, 89(2): 519–525.DOI:10.1016/j.carbpol.2012.03.039[129]李杰.人參須根中人參炔醇的結(jié)構(gòu)確證及對肺癌細(xì)胞株A549的誘導(dǎo)分化作用研究[D].重慶:重慶理工大學(xué), 2011.[130]Shi L, Pi Y, Luo C, et al. In vitro inhibitory activities of six gypenosides on human liver cancer cell line HepG2 and possible role of HIF-1alpha pathway in them[J].Chem Biol Interact, 2015, 238: 48–54.DOI:10.1016/j.cbi.2015.06.004[131]Kwak C W, Son Y M, Gu M J, et al. A bacterial metabolite, compound K, induces programmed necrosis in MCF-7 cells via GSK3beta[J].J Microbiol Biotechnol, 2015, 25(7): 1170–1176.DOI:10.4014/jmb.1505.05057[132]Yang Z, Zhao T, Liu H, et al. Ginsenoside Rh2 inhibits hepatocellular carcinoma through beta-catenin and autophagy[J].Sci Rep, 2016.DOI:10.1038/srep19383[133]Mai T T, Moon J, Song Y, et al. Ginsenoside F2 induces apoptosis accompanied by protective autophagy in breast cancer stem cells[J].Cancer Lett, 2012, 321(2): 144–153.DOI:10.1016/j.canlet.2012.01.045[134]Kim D G, Jung K H, Lee D G, et al. 20(S)-Ginsenoside Rg3 is a novel inhibitor of autophagy and sensitizes hepatocellular carcinoma to doxorubicin[J].Oncotarget, 2014, 5(12): 4438–4451.DOI:10.18632/oncotarget[135]Ko H, Kim Y J, Park J S, et al. Autophagy inhibition enhances apoptosis induced by ginsenoside Rk1 in hepatocellular carcinoma cells[J].Biosci Biotechnol Biochem, 2009, 73(10): 2183–2189.DOI:10.1271/bbb.90250[136]An I S, An S, Kwon K J, et al. Ginsenoside Rh2 mediates changes in the microRNA expression profile of human non-small cell lung cancer A549 cells[J].Oncol Rep, 2013, 29(2): 523–528.[137]Jiao L, Zhang X, Wang M, et al. Chemical and antihyperglycemic activity changes of ginseng pectin induced by heat processing[J].Carbohydr Polym, 2014, 114: 567–573.DOI:10.1016/j.carbpol.2014.08.018

相關(guān)知識

The Health Benefits of Dietary Fibre
Arts and health
Stress and Distress During Pregnancy: How to Protect Both Mother and Child
Research progress of correlation between sleep during pregnancy and offspring birth weight
表觀遺傳學(xué)——環(huán)境對基因表達(dá)的影響
Impacts of farmers engaging in organic farming on their well
The influence of lifestyle and psychological factors on obesity in an occupational population
CSF3R和行動控制對應(yīng)激與健康飲食關(guān)系的調(diào)節(jié)作用:應(yīng)激影響健康行為的個體化模型的初步證據(jù)
Pregnant women: addressing maternal mental health in Africa
情緒對飲食行為的影響

網(wǎng)址: Advance in components with antitumor effect of Panax ginseng and their mechanisms http://m.u1s5d6.cn/newsview338464.html

推薦資訊