首頁 資訊 Advance in components with antitumor effect of Panax ginseng and their mechanisms

Advance in components with antitumor effect of Panax ginseng and their mechanisms

來源:泰然健康網(wǎng) 時間:2024年12月07日 13:18

摘要: 人參是中國延用了兩千多年珍貴的傳統(tǒng)中藥材之一,由于其具有諸多藥理作用而臨床廣泛應用于治療腫瘤等多種疾病。目前腫瘤已經(jīng)成為威脅人類健康的重要因素,因而人參抗腫瘤作用也越加受到關注。針對人參抗腫瘤作用的有效成分及其分子作用機制、構效關系進行綜述。研究表明人參抗腫瘤作用的主要有效成分為人參皂苷及其腸道菌群代謝產(chǎn)物、人參多糖和人參炔醇,這些活性成分發(fā)揮藥理作用的機制目前已較為明確,其作用機制主要包括誘導腫瘤細胞周期阻滯、凋亡及分化、增強對腫瘤細胞免疫、抑制腫瘤細胞增殖及侵襲與轉移等,而其分子機制涉及許多相關基因、蛋白、蛋白酶、免疫細胞、細胞因子及相關信號通路等的調控與表達。此外,人參有效成分的抗腫瘤作用表現(xiàn)出一定的劑量依賴性,且其化學結構的不同導致抗腫瘤活性有所差異。人參中含有豐富的抗腫瘤活性成分,有望為臨床治療各種腫瘤提供安全有效的天然藥物及制劑。

Advance in components with antitumor effect of Panax ginseng and their mechanisms

LUO Lin-ming1 ,SHI Ya-ning1,JIANG Yi-na1,ZHAN Ji-hua1,QIN Li1,CHEN Nai-hong1,2    

Abstract: Panax ginseng C. A. Mey is one of precious traditional Chinese herbal medicine for two thousand years history, due to its various pharmacological effects and wide utilization in the clinical treatment of tumors and other diseases. Presently tumor has become an important factor threatening human health that the antitumor effect of P. ginseng is attracted great attention. In this paper, the effective components of antitumor action by P. ginseng and its molecular mechanism and structure-activity relationship are summarized. Studies have shown that the main effective components of P. ginseng for antitumor effect are ginsenosides and its metabolic products of intestinal bacteria, ginseng polysaccharides, and ginseng polyacetylenes. The functional mechanism of which are clear relatively now and their main mechanisms including induction of cycle arrest, apoptosis and differentiation of tumor cells, enhancement of immunity to tumor cells, inhibition of tumor cell proliferation, invasion and metastasis, etc. And the molecular mechanism is involved in the regulation of many related genes, proteins, proteases, immune cells, cytokines, and signaling pathways, etc. In addition, the active ingredients of P. ginseng exert antitumor effect in a dose-dependent manner, and the different chemical structures of which lead to different antitumor activity. In conclusion, P. ginseng is abundant with antitumor active ingredients, which is expected to provide safe and effective natural medicine and its preparation for clinical treatment of various tumors in the future.

Key words:Panax ginseng C. A. Mey    ginsenoside    antitumor    molecular mechanism    structure-activity relationship    

人參為五加科植物人參Panax ginseng C. A. Mey.的干燥根或根莖,作為“上品”的補益藥使用已有兩千多年的歷史,是中國最常用的、最重要的、最珍貴的傳統(tǒng)中藥材之一。現(xiàn)在人參葉也已經(jīng)被《中國藥典》收錄作為單獨的藥用品種使用。人參由于具有很高的藥用價值,在臨床上廣泛用于治療心血管、胃和肝臟疾病、神經(jīng)衰弱及腫瘤等[1]。目前,人參藥用價值的開發(fā)以及發(fā)揮藥理作用的有效成分及其作用機制研究已經(jīng)取得了很大的突破。最新的研究進展表明[2-3],人參含有豐富的三萜皂苷類及多糖類等生物活性成分,這些活性成分尤其皂苷類成分具有廣泛的藥理作用,如抗腫瘤、抗氧化、抗炎、抗過敏、抗疲勞、抗應激、抗輻射、抗衰老、抗骨質疏松、免疫調節(jié)、調血脂、降血糖、保肝、保護中樞神經(jīng)及心腦血管系統(tǒng)等。其中,抗腫瘤作用的機制及其藥效物質基礎的研究是目前一大熱點,人參也已成為腫瘤輔助治療的熱點藥物。本文就人參抗腫瘤的分子機制、有效成分及其構效關系的研究進展進行綜述,為進一步深入研究以及臨床應用提供參考與理論依據(jù)。

1 人參抗腫瘤作用的主要有效成分

大量藥理實驗數(shù)據(jù)表明人參具有顯著的抗腫瘤作用,其中具有抗腫瘤活性的成分有人參皂苷(ginsenosides)及其代謝產(chǎn)物、人參多糖(ginseng polysaccharides)和人參炔醇(ginseng polyacetylenes)。人參皂苷是人參抗腫瘤作用的主要成分,其次為人參多糖。普通人參皂苷進入人體后經(jīng)過腸道菌群的代謝作用發(fā)生逐級脫糖基,最終轉化為次皂苷和/或皂苷元[4],如人參皂苷Rb1、Rb2、Rc和Rd可代謝轉化為人參皂苷Rg3、F2、CK,人參皂苷Rg1代謝轉化為人參皂苷Rh1和F1[5],人參皂苷Rg3又可轉化為人參皂苷Rg5,人參皂苷Rg5還可轉化為Rh3,CK則轉化為原人參二醇(protopanoxadiol,PPD)等[6]。目前據(jù)文獻報道具有抗腫瘤作用的單體人參皂苷及其代謝產(chǎn)物有人參皂苷Rb1、Rb2、Rb3[7]、Rg1、Rg3及6-乙?;?Rg3[8]、Rg5、Rg18[8]、Rh1、Rh2、Rh4、Rk1、Rp1、Rd、Re、Re7[8]、Rs11[8]、Rf[9]、F1、F2[10]、CK及苷元PPD、25-OH-PPD、25-OCH3-PPD[11]等。其中人參皂苷Rb1、Rb2、Rb3、Rc、Rd、Rg3、Rg5、Rh2、Rs11、Rk1、F2、CK屬于人參二醇型皂苷(panaxadiol saponin,PDS),人參皂苷Re、Re7、Rg1、6-乙?;?Rg3、Rg18、Rh1、Rh4、Rp1、Rf和F1為人參三醇型皂苷(panaxtrol saponin,PTS)。目前已從人參植物的根或果中分離純化出多種抗腫瘤多糖,包括人參多糖GFP1 [相對分子質量約為1.4×105,由半乳糖(galactose,Gal)、葡萄糖(glucose,Glu)、鼠李糖(rhamnose,Rha)和阿拉伯糖(arabinose,Ara)組成,摩爾比為6.1:2.0:1.1:3.2[12]]、人參多糖PGP2a [相對分子質量約為3.2×104,由Gal、Ara、Glu和半乳糖醛酸(galacturonic acid,GalA)組成,摩爾比為3.7:1.6:0.5:5.4[13]]、人參多糖PGPW1 [相對分子質量約為3.5×105,由Glu、Gal、甘露糖(mannose,Man)和Ara組成,摩爾比3.3:1.2:0.5:1.1[14]]及酸性人參多糖ginsan(相對分子質量約為1.5×105[15])等。人參中還含有少量聚乙炔醇類成分具有抗腫瘤活性,如人參環(huán)氧炔醇(panaxydol,PND)、人參炔三醇(panaxytriol,PNT)和人參炔醇(panaxynol,PNN)等。

2 人參有效成分的抗腫瘤作用

人參有效成分復雜、種類多樣,因而其能對抗多種類型腫瘤,目前文獻報道人參對肝癌、肺癌、胃癌、腎癌、鱗癌、結腸癌、食管癌、膽囊癌、黑色素瘤、膠質瘤、乳腺癌、乳頭瘤、宮頸癌、卵巢癌、子宮內膜癌、膀胱癌、前列腺癌、鼻咽癌、腹水癌、淋巴瘤、骨髓瘤、骨肉瘤、白血病等腫瘤的增殖具有顯著的抑制作用,還能明顯抑制肝癌、肺癌、胃癌、乳腺癌、子宮內膜癌、卵巢癌、前列腺癌、胰腺癌、膀胱癌、黑色素瘤、膠質瘤、纖維肉瘤等腫瘤的侵襲與轉移。人參中單一有效成分也表現(xiàn)出抗多種腫瘤活性,如PPD對肝癌、肺癌、黑色素瘤、乳腺癌和宮頸癌等均有顯著抑制作用。人參的有效成分抗腫瘤作用大多表現(xiàn)出一定的劑量依賴性,隨著劑量增大抗腫瘤活性增強,有些還具有時間依賴性。人參有效成分與其他藥物聯(lián)合使用可以增強抗腫瘤效果,如人參皂苷CK與順氯氨鉑(DDP)聯(lián)合[16]、人參皂苷Rg3聯(lián)合恩度(endostar)[17]對乳腺癌可以產(chǎn)生更好的治療效果,人參皂苷Rg3聯(lián)合絲裂霉素(mitomycin C)加呋喃尿嘧啶(tegafur)化療可改善晚期胃癌患者的生存率[18],20(S)-PPD與骨化三醇(calcitriol)協(xié)同抑制前列腺癌細胞生長[19],PPD顯著增強5-氟尿嘧啶(fluorouracil)的抗結腸癌作用[20],人參酸性多糖協(xié)同紫杉醇(paclitaxel,PTX)可增加巨噬細胞的殺瘤活性[21],同時ginsan可增強重組白細胞介素(recombinant interleukin,rIL)-2對黑色素瘤細胞肺轉移的抑制作用[22]等。另外,有報道通過對人參進行加熱[23]、蒸制成紅參[24]或將紅參進一步發(fā)酵[25]均可提高人參抗腫瘤的效果,原因可能是這些處理會改變人參皂苷等有效成分的量或種類,如鮮人參或生曬參中其實是不存在PNT和人參皂苷Rh2的,而紅參中含有,PNT是在人參加工過程中由PND的環(huán)氧環(huán)經(jīng)水解作用生成[26],人參皂苷Rh2是在蒸制過程中可由人參皂苷Rb2經(jīng)脫糖基作用形成[27]。

3 人參有效成分抗腫瘤作用機制3.1 抑制腫瘤細胞增殖

腫瘤細胞具有無限增殖的特性,主要以有絲分裂的方式進行增殖。人參有效成分人參皂苷、人參多糖及人參炔醇在腫瘤細胞增殖過程中可顯著抑制細胞增殖活力與細胞分裂。研究表明20(S)-人參皂苷Rg3[28-29]、人參皂苷Rd[30]、PNT[31]、PNN[32]等能夠抑制腫瘤細胞的有絲分裂及在分裂間期DNA的合成,如在結腸癌細胞中抑制細胞內增殖相關蛋白增殖細胞核抗原(proliferation cell nuclear antigen,PNCA)的表達,導致DNA復制和修復的減少,從而抑制細胞分裂增殖。人參皂苷Rd還能降低微管相關蛋白RP/EB家族成員stathmin1(STMN1)的表達,抑制微管聚合形成紡錘體,也能提高stratifin(SFN)的表達干擾有絲分裂進程[30]。在癌細胞中組蛋白去乙?;福╤istone deacetylases,HDACs)的過表達與組蛋白乙酰轉移酶(histone acetyltransferase,HAT)的低表達導致組蛋白低乙?;?,而組蛋白低乙?;J谷旧|失去轉錄活性,不利于腫瘤抑制基因的表達。目前研究表明人參皂苷Rg3能降低HDAC3表達,從而增加p53乙酰化使其轉錄活性提高[33],同時20(S)-人參皂苷Rh2[34]可降低白血病細胞中HDAC1、HDAC2及HDAC6的活性及表達,并增加HAT的活性,使組蛋白(histone)H3的乙?;皆黾?,從而對腫瘤細胞發(fā)揮抗增殖作用。

近來研究表明人參皂苷還能抑制“Warburg效應”,即癌細胞在有氧條件下通過糖酵解代謝葡萄糖[35],Warburg效應有利于腫瘤生長。20(S)-人參皂苷Rg3在卵巢癌細胞中通過抑制信號轉導及轉錄激活因子(signal transducers and activators of transcription,STAT)3通路抑制關鍵酶己糖激酶(hexokinase,HK)2和丙酮酸激酶(pyruvate kinase,PK)M2的活性[36],同時在白血病細胞中人參皂苷Rh2可通過降低蛋白激酶B(protein kinase B,PKB/Akt)/哺乳動物類雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信號下調磷酸葡萄糖異構酶(phosphoglucose isomerase,PGI)表達[37],從而抑制有氧糖酵解。人參皂苷也能調控一些與腫瘤細胞增殖密切相關的生長因子,如胰島素樣生長因子(insulin-like growth factors,IGFs)等。研究發(fā)現(xiàn)人參皂苷Rg3、Rp1可通過減少分泌IGF-1并抑制其受體(IGF-1R)表達,且使Akt/mTOR通路失活對多發(fā)性骨髓瘤、乳腺癌細胞增殖產(chǎn)生抑制作用[38-39]。因此,Akt/mTOR通路是人參調控腫瘤細胞增殖關鍵的相關信號通路之一。此外,研究發(fā)現(xiàn)人參皂苷還能調控一些microRNAs(miRNAs)表達來抑制腫瘤細胞增殖。人參皂苷Rh2可能通過上調miR-491抑制與細胞增殖和信號傳導密切相關的表皮生長因子受體(epidermal growth factor receptor,EGFR)信號通路[40],以及上調miRNA-128的表達抑制膠質瘤細胞增殖[41]。另外,人參多糖PGPW1還能夠抑制膀胱癌細胞表面的莨菪堿受體3(muscarinic receptor 3,M3R)表達,從而抑制細胞增殖和遷移[14]。

3.2 誘導腫瘤細胞周期阻滯

細胞周期阻滯是抑制腫瘤細胞增殖的重要環(huán)節(jié)。細胞分裂周期可分為DNA合成前期(G1期)、DNA合成期(S期)、DNA合成后期(G2期)、細胞分裂期(M期),另外還有一個處于休眠狀態(tài)不增殖分裂的靜止期(G0期)。人參有效成分中大多數(shù)人參皂苷可誘導腫瘤細胞周期阻滯在G0/G1期,少數(shù)人參皂苷阻滯在G2/M期,如人參皂苷Rf誘導人成骨肉瘤細胞周期阻滯于G2/M期[9];人參多糖及人參炔醇類成分可阻滯腫瘤細胞周期于G2/M期[13, 31]。

人參的有效成分可通過多種途徑誘導腫瘤細胞周期阻滯。人參皂苷Rg3[42]、Rg5[43]、Rh2[44-46]、CK[47]及25-OH-PPD[48]等在多種腫瘤如乳腺癌、胃癌、肺癌、前列腺癌等細胞周期相關蛋白調控階段,通過上調細胞周期調控因子毛細血管擴張性共濟失調突變蛋白(ataxia telangiectasia mutated,ATM)、p53、p27、p21、p15、pRb2/p130的表達,下調鼠雙微體基因(murine double minute,MDM)2表達、Rb磷酸化、E2F1轉錄活性等,進而使細胞分裂周期蛋白(cell division cycle protein,CDC)-2、25A,細胞周期蛋白(cyclin,Cyc)-B、D1、D2、D3、E2,周期蛋白依賴性蛋白激酶(cyclin dependent kinase,CDK)-4、6等的表達下調,最終使腫瘤細胞周期阻滯在G0/G1期。p27、p21、p15及p16等為CDK抑制劑(CDKIs),研究表明人參皂苷CK[47]、Rh2[44, 46]等在結腸癌、白血病細胞中是通過上調磷脂酰肌醇-3-羥激酶(phosphatidyl inositol 3-kinase,PI3K)/Akt和轉化生長因子(transforming growth factor,TGF)-β信號轉導通路,促進這些CDKIs對cyclin-CDKs復合物(如cyclin D1-CDK4、cyclin D1-CDK6)、CDKs激酶(如CDK-2、4、6)活性的抑制作用,從而使腫瘤細胞停滯于G1期。

3.3 誘導腫瘤細胞凋亡

大量的實驗數(shù)據(jù)表明人參及其人參皂苷等有效成分能夠顯著誘導多種腫瘤細胞凋亡,這是人參發(fā)揮抗腫瘤作用的一個非常重要的機制。細胞凋亡主要有三大途徑:線粒體介導凋亡(內源性途徑)、死亡受體介導凋亡(外源性途徑)、內質網(wǎng)應激介導凋亡途徑。研究發(fā)現(xiàn)20(S)-人參皂苷Rg3,人參皂苷Rg5、Rh2、Rk1、CK、PPD等能誘導內源性凋亡即上調Bcl-2家族成員Bad、Bid、Bim、Bax及Bak等促凋亡蛋白的表達,同時下調Bcl-2、Bcl-xL等抗凋亡蛋白表達,促使線粒體跨膜電位降低并釋放細胞色素(cytochrome,Cyto)C,隨后半胱天冬酶(caspase,Casp)-9被激活;且20(S)-人參皂苷Rg3、人參皂苷Rh2、Rk1、CK、PPD也能誘導腫瘤細胞外源性凋亡即上調p53,死亡受體TRAIL-R1(DR4)、TRAIL-R2(DR5),F(xiàn)as及其配體(FasL)的表達,然后Casp-8被激活。這2條途徑都可以激活下游效應分子Casp-3、7,并使聚ADP-核糖聚合酶(poly-ADP-ribose polymerase,PARP)裂解,從而導致腫瘤細胞凋亡[42-43, 45, 49-52]。人參皂苷Rb1、Rb2和Rg1雖然在肺癌細胞中能使Casp-3、8的表達水平明顯升高,但Casp-9和抗凋亡蛋白Bax的水平并沒有改變,說明這3種人參皂苷通過外源性凋亡途徑而不是內在的線粒體途徑誘導腫瘤細胞凋亡[53]。在內源性凋亡途徑中,Bcl-2蛋白家族是控制線粒體釋放致凋亡因子的主要調節(jié)因子,而Casps不管在外源性還是內源性凋亡途徑中都是必不可少的,但在腫瘤細胞中凋亡抑制因子(inhibitor of apoptosis proteins,IAPs)的表達可直接或間接抑制Casps的活性而抑制細胞凋亡。研究發(fā)現(xiàn)20(S)-人參皂苷Rg3[54]及人參皂苷Rh2[55]可下調IAPs家族蛋白XIAP、survivin的表達從而阻止Casps被抑制。

人參有效成分可以通過多種途徑調控多種凋亡相關蛋白的表達,從而誘導或加速腫瘤細胞發(fā)生凋亡。研究表明人參皂苷CK在多發(fā)性骨髓瘤細胞中可能是通過增加蛋白酪氨酸磷酸酶(protein tyrosine phosphatase,PTP)SHP-1的表達抑制Janus kinas1(JAK1)及STAT3的磷酸化,并下調STAT3靶基因Bcl-2、Bcl-xL、survivin的表達,表明其可通過抑制JAK1/STAT3信號通路介導腫瘤細胞凋亡[56];人參皂苷Rg3能下調胰腺癌細胞中可磷酸化許多特異性底物的原癌基因Pim-3蛋白的表達,進而促進下游因子Bad磷酸化[57],且在乳腺癌細胞中通過滅活細胞外信號調節(jié)激酶(extracellular signal-regulated kinase,ERK)/Akt信號以及突變p53失穩(wěn)阻斷核轉錄因子-κB(NF-κB)信號,進而抑制Bcl-2的表達[58];人參皂苷Rh2在白血病細胞可通過下調miR-21表達,使靶Bcl-2 mRNA與3′-UTR結合而抑制其翻譯[59];人參皂苷Rk1能夠通過降低端粒逆轉錄酶(telomerase reverse transcriptase,TERT)mRNA及c-MYC表達抑制端粒酶活性,從而抑制腫瘤細胞增殖并促進凋亡[60];人參皂苷Rd在胃癌、乳腺癌細胞可抑制M型瞬時受體電位(melastatin type transient receptor potential,TRPM)7通道活性,從而誘導腫瘤細胞凋亡[61];人參皂苷CK還能增加神經(jīng)鞘氨醇(sphingosine,Sph)、神經(jīng)酰胺(ceramide,Cer)的表達,參與腫瘤細胞凋亡[62];人參多糖PGP2a在胃癌細胞中可通過下調Twist、AKR1C2蛋白表達,上調NF1表達而誘導腫瘤細胞凋亡等[13]。

人參有效成分也可通過多條信號轉導通路誘導腫瘤細胞凋亡。人參皂苷CK在結腸癌細胞中通過鈣離子/鈣調蛋白激活的蛋白激酶(Ca2+/calmodulin-activated protein kinase,CAMK)-Ⅳ使腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)磷酸化,使其被激活,而AMPK的活化可誘發(fā)腫瘤細胞凋亡,表明人參皂苷CK可激活CAMK-Ⅳ/ AMPK信號通路[63];20(S)-PPD可抑制PI3K/Akt信號通路[64];人參皂苷Rg1通過抑制紅細胞生成素受體(erythropoietin receptor,EpoR)在白血病細胞膜表面的表達,并抑制其介導的JAK2/STAT5信號通路[65];人參皂苷Rg3在膠質瘤細胞中抑制MEK信號通路[66];人參皂苷Rh2在白血病細胞中上調腫瘤壞死因子-α(TNF-α)信號通路[67]、在鱗狀細胞癌使PI3K/Akt通路滅活[68];人參皂苷F2可激活凋亡信號調節(jié)激酶(apoptosis signal-regulating kinase,ASK)-1/c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)信號通路[69];人參皂苷Rg3、CK和Rh2在惡性膠質瘤、膀胱癌細胞中可促進活性氧(reactive oxygen,ROS)的形成與積累,且ROS能促進激活p38 MAPK信號通路等[66, 70-71];人參多糖可阻斷Wnt/β-catenin信號通路等[72]。人參有效成分可以調控以上這些信號通路在腫瘤細胞中引發(fā)或促進Casps依賴性細胞凋亡。除了Casps依賴性凋亡途徑,人參皂苷也可通過Casps非依賴性途徑誘導腫瘤細胞凋亡。研究表明人參皂苷CK在結腸癌、鼻咽癌細胞中也能通過誘導線粒體釋放凋亡誘導因子(apoptosis inducing factor,AIF),并從胞質向胞核轉移,從而引起DNA損傷、降解及染色質凝聚,導致腫瘤細胞凋亡,這是一種Casps非依賴性凋亡途徑[63, 73]。

最近研究還表明人參皂苷Rg3、人參環(huán)氧炔醇可通過內質網(wǎng)應激(endoplasmic reticulum stress,ERS)介導腫瘤細胞凋亡。內質網(wǎng)凋亡途徑主要有2種方式:一是內質網(wǎng)對Ca2+的調控,二是內質網(wǎng)上Casp-12的激活。PND在乳腺癌細胞中能夠使EGFR通路激活,隨后磷脂酶(phospholipase,PL)Cγ被激活,然后通過三磷酸肌醇和蘭尼堿受體從內質網(wǎng)釋放Ca2+,胞漿內Ca2+濃度升高導致CaMK-Ⅱ和TGF-β活化激酶(TGF-β-activated kinase,TAK)1激活p38 MAPK和JNK,繼而使還原性輔酶Ⅱ(NADPH)激活,進而發(fā)生氧化應激,接著引發(fā)內質網(wǎng)應激。在ERS的未折疊蛋白反應中,蛋白激酶R樣內質網(wǎng)激酶(protein kinase R-like ER kinase,PERK)起到傳遞凋亡信號的作用,其可誘導ERS特異性轉錄因子CHOP表達,進而提高促凋亡蛋白Bim的表達,線粒體攝取Ca2+導致線粒體Ca2+([Ca2+] m)濃度升高,最終啟動Casps依賴性線粒體凋亡途徑[74]。此外,人參皂苷Rg3在膽囊癌細胞會激活內質網(wǎng)上的Casp-12[75],而Casp-12可直接使Casp-9裂解,進而激活Casp-3,最終導致細胞凋亡[76]。

3.4 誘導腫瘤細胞分化

目前對人參誘導腫瘤細胞分化的研究主要針對于白血病,人參皂苷可以促進血紅蛋白的生成、白血病細胞衰老,并使白血病細胞向較成熟細胞分化。研究表明人參總皂苷通過促進促紅細胞生成素受體(erythropoietin receptor,EpoR)的內化誘導白血病細胞向紅系分化[77]。人參皂苷Rh2能通過上調TGF-β表達誘導白血病細胞分化[44],同時人參皂苷Rh4能夠誘導白血病細胞向粒系、單核系及巨核系分化[78],其作用可能與蛋白激酶C(protein kinase C,PKC)/ERK通路有關[79]。人參皂苷Rh2還能通過抑制TLMA活性誘導肝癌細胞趨向于正常細胞分化[80]。人參聚炔醇、人參多糖類成分也可以誘導腫瘤細胞分化。PNN通過活化細胞內腺苷酸環(huán)化酶(cAMP)、PKC誘導白血病細胞向單核細胞分化[81],PND也能使細胞內cAMP濃度升高而誘導膠質瘤細胞分化[82],PND還能通過上調抑癌基因p21和pRb蛋白水平、下調細胞分化抑制因子(inhibitor of differentiation,Id)-1、2基因的表達,顯著降低甲胎蛋白(α-fetoprotein,αFP)、白蛋白(albumin,Alb)的分泌,提高γ-谷氨酰轉移酶(γ-glutamyl transferase,γ-GT)、堿性磷酸酶(alkaline phosphatase,ALP)活性,從而引起肝癌細胞向類似于更成熟形式的肝細胞形態(tài)和超微結構變化[83]。同時人參多糖在白血病細胞中也能使Id3基因的表達下調進而促進細胞分化[84]。逆轉腫瘤細胞向正常細胞分化是腫瘤治療的一種重要策略,人參有效成分能夠明顯誘導腫瘤細胞的分化,但其分子機制還不是很確切,有待進一步深入探索以加深對誘導分化過程的認識。

3.5 增強對腫瘤細胞免疫

研究表明人參皂苷、人參多糖類成分具有顯著的免疫調節(jié)作用,可增強機體對腫瘤細胞的免疫能力。人參皂苷可通過磷酸化ERK1/2和JNK提高TNF-α、白細胞介素(interleukin,IL)-6和IL-10水平,促進CD14+單核細胞分化形成樹突狀細胞(dendritic cells,DCs)[85],而人參皂苷Rg1、Rh1等又能促進DCs刺激T淋巴細胞增殖,增加IL-12的生成,從而增強DC-淋巴因子及PHA激活的殺傷細胞(LPAK)對人乳頭瘤細胞的殺傷能力[86],人參皂苷Rg1還能通過上調PI3K/Akt/mTOR通路在脂多糖激活的巨噬細胞(macrophage,MΦ)中調節(jié)先天免疫反應,顯著增加TNF-α蛋白翻譯水平[87]。人參皂苷Rg3則能刺激刀豆蛋白(concanavalin,Con)A誘導淋巴細胞增殖和Th1型細胞因子IL-2和γ干擾素(interferon,IFN-γ)水平增強,從而顯著提高荷瘤小鼠細胞免疫[88]。此外人參皂苷Rg3不管是在免疫原性腫瘤如黑色素瘤或非免疫原性腫瘤如肺癌,都可誘導免疫原性腫瘤細胞死亡,同時增加鈣網(wǎng)蛋白(calreticulin,CRT)表達從而促進DC識別、吞噬死亡腫瘤細胞,且人參皂苷Rg3誘導的細胞死亡會導致非免疫原性向免疫原性腫瘤細胞的轉化[89]。人參多糖對腫瘤細胞無直接殺傷作用,但研究發(fā)現(xiàn)人參中的酸性多糖可通過激活轉錄因子如NF-κB和AP-1及其上游信號酶如ERK和JNK而激活MΦ功能,從而產(chǎn)生細胞毒作用[90],且其吞噬細胞的吞噬活性增強,同時通過激活T、CTL、B淋巴細胞、NK細胞以及增加外周血T淋巴細胞CD4+/CD8+值,誘導IL-1、2、6、12和TNF-α、IFN-γ、GM-CSF及NO水平升高[91-93],且ginsan通過釋放這些內源性細胞因子由NK細胞和T細胞產(chǎn)生LAK細胞,并提高NK、CTL細胞殺傷活性[15, 22]。此外,人參多糖(RG-I-4)抑制半乳凝集素-3(galectin-3,Gal-3)蛋白表達,從而抑制Gal-3與T細胞結合而避免其破壞T細胞免疫活性[94]。

3.6 抑制腫瘤的侵襲與轉移

大量的實驗研究表明,人參有效成分對多種腫瘤的侵襲與轉移具有明顯的抑制作用。在腫瘤的侵襲與轉移過程中存在幾個重要環(huán)節(jié):破壞細胞外基質(extracellular matrix,ECM)屏障、上皮細胞-間充質轉化(epithelial-mesenchymal transition,EMT)及腫瘤新生血管生成。人參有效成分可以作用于腫瘤細胞侵襲與轉移的這些關鍵過程,從而達到抗腫瘤侵襲與轉移的目的。

ECM由基底膜和細胞間基質組成,基質金屬蛋白酶(matrix metalloproteinases,MMPs)能夠降解ECM中各種蛋白成分,破壞防御腫瘤細胞侵襲的重要組織屏障,從而導致腫瘤細胞侵襲與轉移。研究表明,人參皂苷Rb2[95]、Rg1[96]、Rg3[97-98]、Rh1[99]、Rh2[100]、Rd[101]、CK[102]等可通過抑制MMP-1、2、3、7、9、13、14等基質金屬蛋白酶在癌細胞中表達以避免其破壞ECM屏障,從而抑制癌細胞侵襲和轉移。而且人參皂苷Rh1、Rh2等能通過抑制MAPKs(包括ERK、JNK、p38 MAPK)和PI3K/Akt信號通路及其下游的轉錄因子NF-κB和AP-1的表達,也能通過募集HDAC4進而抑制AP-1[103],這對于抑制MMPs基因的表達及其轉錄因子活性發(fā)揮重要作用[99-100, 104],如人參皂苷Rg3可通過抑制p38 MAPK通路的激活抑制MMP-2的表達[105]。此外,研究也表明人參皂苷Rb2、Rg1不會影響MMPs特異性抑制因子TIMP1/2的表達[95-96]。

惡性腫瘤特別是上皮性腫瘤常發(fā)生EMT促進腫瘤的侵襲和轉移。研究表明人參有效成分可以通過多種方式很好地阻止EMT。在許多腫瘤中巖藻糖基轉移酶Ⅳ(fucosyltransferase Ⅳ,F(xiàn)UT4)及其合成的腫瘤糖抗原Lewis Y(LeY)往往異常升高,這與EMT密切相關。研究發(fā)現(xiàn)人參皂苷Rg3等能夠下調肺癌細胞中FUT4的表達使LeY合成減少,進而介導EGFR失活,從而阻斷MAPK和NF-κB信號通路,使E-鈣粘蛋白(cadherin,Cad)水平升高,而Snail蛋白、波形蛋白(vimentin,Vim)、N-Cad和纖連蛋白(fibronectin,F(xiàn)N)[16]水平下降即EMT被抑制[106]。轉化生長因子在多種腫瘤中高表達,研究表明TGF-β1可以通過激活Smad2/3或p38 MAPK信號通路發(fā)生EMT,且Smad通路與腫瘤細胞抗失巢凋亡有關。研究顯示20(R)-人參皂苷Rg3能抑制TGF-β1在肺癌細胞的表達,進而抑制Smad2和p38 MAPK通路的激活,從而抑制EMT并促進腫瘤失巢凋亡[105]。此外缺氧的微環(huán)境易造成EMT而促進腫瘤的侵襲、轉移。研究發(fā)現(xiàn)在許多惡性腫瘤細胞中缺氧誘導因子(hypoxia inducible factor,HIF)-1α高表達,而20(S)-人參皂苷Rg3在卵巢癌細胞可通過激活泛素-蛋白酶體途徑(ubiquitin proteasome pathway,UPP)使HIF-1α發(fā)生降解,進而降低HIF-1α表達,從而抑制HIF-1α引起缺氧以避免發(fā)生EMT[107]。除了人參皂苷,人參多糖和人參炔醇類成分也對EMT具有抑制作用。研究發(fā)現(xiàn)人參多糖PGPW1對人膀胱癌細胞具有較強抗轉移活性[14],其可通過下調Twist及AKR1C2、上調NF1表達阻斷EMT[108],從而抑制腫瘤細胞遷移和侵襲。PNN也能上調E-Cad、下調Vim表達從而抑制胰腺癌細胞遷移[32]。此外,MMP-9的過表達可直接誘導EMT,但需要聯(lián)合轉錄因子Snail的表達[109],而研究表明人參皂苷Rg3[98, 106]、PNN[32]對MMP-9、Snail的表達均有抑制作用,從而可阻斷EMT。

抑制腫瘤新生血管生成在抗腫瘤侵襲、轉移中起到關鍵性作用。新生血管的生成涉及一些血管活性生長因子如血管內皮生長因子(vascular endothelial growth factors,VEGFs)、堿性成纖維細胞生長因子(basic fibroblast growth factor,bFGF)、ephrin(Eph)B2等。研究表明人參皂苷等成分能夠通過多種途徑調控這些新生血管形成因子。VEGF是一個關鍵的促新生血管生成因子,人參皂苷Rg3可通過抑制p38/ERK信號下調VEGF(如VEGF-A、B、C等[17])的表達[104],還通過抑制缺氧誘導的多種信號包括HIF-1α、COX-2、NF-κB、STAT3、ERK1/2和JNK下調癌細胞中VEGF的表達[110];同時人參皂苷Rh2通過增加多形性膠質母細胞瘤中miR-497水平進而抑制VEGF-A mRNA翻譯[111]。人參皂苷CK在人臍靜脈內皮細胞能夠抑制鞘氨醇激酶(sphingosine kinase,SphK)1的活性及表達,進而抑制SphK1催化Sph生成鞘氨醇-1-磷酸(sphingosine 1-phosphate,S1P),S1P生成的減少導致p38 MAPK信號受抑制,從而減少內皮細胞VEGF表達而抑制新生血管生成[62, 112]。此外MMPs也與VEGF表達有一定聯(lián)系,如MMP-2的表達受抑制可通過抑制PI3K/Akt信號抑制轉錄因子HIF-1α的表達,進而抑制VEGF的表達[113]。除了VEGF,人參皂苷也能抑制bFGF、EphB2等其他促新生血管生成因子的表達。20(R)-人參皂苷Rg3能顯著抑制bFGF誘導的新生血管的形成[114],能通過下調血管內皮鈣黏蛋白(VE-cadherin,VE-Cad)、上皮細胞激酶(eithelial cell kinaspe,EphA2)的表達有效抑制胰腺癌血管生成擬態(tài)的形成[98],20(R)-人參皂苷Rg3也能通過miRNA-520h的過表達抑制新型促血管生成因子EphB2及其受體EphB4表達[115],還可能通過降低血清IGF-1水平[38, 116],從而抑制腫瘤血管生成。人參皂苷還能促進抗血管新生因子色素上皮衍生因子(pigment epithelium derived factor,PEDF)的表達。研究顯示人參皂苷Rb1能增加PEDF的蛋白表達、轉錄和分泌,并通過雌激素受體(estrogen receptor,ER)-β激活PEDF,介導抑制內皮細胞管狀結構的形成[117]。內皮祖細胞(endothelial progenitor cells,EPCs)在體內能夠分化成有功能的內皮細胞,參與缺血組織的血管新生及損傷血管的再內皮化。研究發(fā)現(xiàn)人參Rg3能夠抑制EPCs從骨髓微環(huán)境動員到外周循環(huán)[104],且通過抑制VEGF依賴性Akt/eNOS信號抑制EPCs的分化[118],從而抑制損傷血管的修復與新生血管的形成。在血管生成過程中細胞黏附分子整合素(integrin,Int)也起重要作用,其可通過調節(jié)內皮細胞的黏附和遷移能力參與血管的形成。研究發(fā)現(xiàn)人參皂苷Rp1、Rg3等能抑制黑色素瘤細胞的轉移性肺轉移,可能的機制是其抑制Intβ1的表達顯著抑制內皮細胞黏附與遷移,從而抑制血管生成[119]。人參皂苷Rh2還能通過下調細胞間連接黏附分子(junctional adhesion molecule,JAM)1、2在腫瘤細胞的表達,抑制腫瘤組織血管生成[120]。

腫瘤細胞的侵襲、遷移還與趨化因子密切相關,趨化因子CXCL12及其受體CXCR4在癌癥的侵襲和遷移中發(fā)揮重要作用。研究表明人參皂苷CK對CXCL12誘導膠質瘤細胞的遷移可通過抑制PKCα、ERK1/2的激活而抑制其受體CXCR4的表達,從而抑制膠質瘤細胞的遷移[102],同時人參皂苷Rg3也能抑制乳腺癌細胞中CXCR4表達[121]。此外,多種人腫瘤細胞中表達水通道蛋白(aquaporins,AQPs),其可參與腫瘤細胞的遷移。研究發(fā)現(xiàn)人參皂苷Rg3在前列腺癌細胞中通過激活p38 MAPK信號可使AQP1表達下調,從而抑制腫瘤細胞遷移[122]。人參多糖(RG-I-4)還能抑制Gal-3蛋白介導的腫瘤細胞黏附聚集,進而抑制細胞遷移[94]。

4 人參有效成分抗腫瘤作用的構效關系4.1 人參皂苷抗腫瘤的構效關系

人參皂苷及其代謝產(chǎn)物的化學結構與其抗腫瘤功能相關,研究表明PDS一般比PTS抗腫瘤活性強[24, 27];人參皂苷的糖分子數(shù)目會影響其抗腫瘤效果,糖分子越少其抗腫瘤活性可能越好[24],如人參皂苷Rh1抗癌活性強于其前體Rg1,PPD抗腫瘤效果優(yōu)于人參皂苷Rg3、Rh2等,原因可能是一方面糖分子越少其細胞毒性作用越大[24],另一方面人參皂苷和多糖因其親水性不易通過腸道被人體吸收,而極性小或非極性則易被人體吸收[123];人參皂苷的立體選擇性也會影響抗癌活性,反式人參皂苷或皂苷元的抗腫瘤活性優(yōu)于其對應的順式異構體[24, 27],如20(S)-PPD和20(S)-人參皂苷Rg3、Rh2的抗癌活性分別高于20(R)-PPD和20(R)-人參皂苷Rg3、Rh2[27, 124]。當然上述的構效關系并不是絕對的,如由人參三醇型人參皂苷代謝生成的原人參三醇雖然不含糖分子易被人體吸收,但是從目前的研究結果來看其并沒有明顯的抗癌活性;也有研究顯示20 (R)-人參皂苷Rg3比20(S)-Rg3對提高荷瘤宿主的細胞免疫功能更強[88]。

4.2 人參多糖抗腫瘤的構效關系

人參多糖也具有一定的構效關系。人參多糖結構多樣,主要含有中性的淀粉樣葡聚糖和酸性的果膠。對人參多糖進行系統(tǒng)分級,可將其分為4種結構類型的多糖:淀粉樣葡聚糖(WGPN、WGPA-N)、同型半乳糖醛酸聚糖(HG型果膠:WGPA-1-HG~4-HG)、阿拉伯半乳聚糖(AG型果膠:WGPA-1-RG、2-RG)和I型鼠李糖半乳糖醛酸聚糖(RG-I型果膠:WGPA-3-RG、4-RG)[125]。研究表明富含HG結構域的人參果膠對結腸癌細胞具有明顯抗增殖和誘導細胞周期阻滯于G2/M期作用,同時富含HG、RG-I及只富含HG型果膠對肝癌細胞增殖具有顯著抑制作用,而淀粉樣葡聚糖和AG型果膠對這2種腫瘤細胞均未表現(xiàn)出抑制增殖作用[125-126]。富含HG結構域的人參果膠也能夠抑制成纖維細胞遷移,富含HG、RG-I果膠其抑制遷移作用稍強于只富含HG的果膠,而淀粉樣葡聚糖和AG型果膠對細胞遷移的抑制作用較小,且人參果膠多糖的這種抑制作用與GalA量(HG結構域)和Rha量(RG-I結構域)有關[127]。因此,酸性人參多糖的抗腫瘤活性要明顯高于中性多糖。此外,人參果膠(RG-I-4)與Gal-3相互作用的構效關系研究表明多糖骨架上高Gal量、高Gal/Ara比例、AG-I型側鏈和側鏈總數(shù)多對發(fā)揮抗腫瘤作用起關鍵作用[94],且RG-I型果膠的AG-I型側鏈中半乳聚糖側鏈對發(fā)揮抗腫瘤作用是必不可少的[94],而AG-Ⅱ型側鏈中阿拉伯半乳聚糖側鏈是必不可少的[128]。因此構成多糖分子骨架主鏈、側鏈的單糖組成、含量和連接方式以及側鏈數(shù)目是影響人參多糖抗腫瘤活性的重要因素。

4.3 人參炔醇抗腫瘤的構效關系

人參中聚乙炔醇類成分雖然量較低,但PND、PNN、PNT等已被證明具有抗腫瘤活性,其中PND具有較強的細胞毒作用,對腫瘤細胞抑制作用最強。研究表明低質量濃度(≤12.5 μg/mL)的人參總炔醇具有非細胞毒介導的生長抑制效應,而高質量濃度(≥25 μg/mL)則主要表現(xiàn)為直接細胞毒作用,其細胞毒性大小可能與其結構式中C-9和C-10的化學結構有關[129],但目前確切的結構與功效關系還不清楚。研究發(fā)現(xiàn)在絞股藍總皂苷中具有環(huán)氧結構的絞股藍皂苷對肝癌細胞增殖的抑制作用是最強的[130],提示環(huán)氧結構可能是一個重要的毒性活性中心。因此,可以推測PND抗腫瘤活性高于PNN、PNT的可能原因是PND結構中有環(huán)氧基團的存在。

5 結語與展望

現(xiàn)有研究結果表明人參具有顯著的抗腫瘤作用,其藥效物質基礎為人參皂苷及其腸道菌群代謝產(chǎn)物、人參多糖和人參炔醇,這3類有效成分對多種類型腫瘤的發(fā)生、發(fā)展及侵襲轉移均有抑制作用,并都具有一定的構效關系及作用特點,具體情況見表 1。

表 1 人參抗腫瘤作用的有效成分及其抗腫瘤類型、構效關系、特點 Table 1 Effective components with antitumor effect of P. ginseng and their antitumor types, structure activity relationship, and characteristics

從表 1中可看出人參的有效成分非常復雜,其主要成分人參皂苷及其在人體腸道菌群的代謝產(chǎn)物可以對抗大部分常見腫瘤。目前已經(jīng)從人參中提取分離出至少40種以上的單體人參皂苷,而目前研究結果顯示接近1/2的單體皂苷具有明確抗腫瘤作用,其他單體人參皂苷雖然沒有數(shù)據(jù)表明具有抗腫瘤活性,但可能也具有潛在的抗腫瘤活性,這需要進一步擴展研究才能確定。

目前研究已證明人參中3類有效成分都能誘導腫瘤細胞周期阻滯、凋亡及分化,抑制腫瘤細胞增殖及侵襲與轉移,人參皂苷和人參多糖特別是人參多糖還能通過增強對腫瘤細胞免疫力發(fā)揮抗腫瘤作用,而人參炔醇類成分不具有免疫調節(jié)功能,但是PND等可以通過直接細胞毒作用殺死腫瘤細胞。除了這六大作用外,人參皂苷等化學成分還能夠誘導腫瘤細胞程序性壞死[131]、降低腫瘤細胞的多藥耐藥性、促進腫瘤細胞或腫瘤干細胞自噬[132-133],同時又能抑制抗腫瘤藥(如阿霉素)治療引起的自噬,從而增強其誘導腫瘤細胞死亡的敏感性[134]。但是需要特別指出的是,也有研究表明人參皂苷Rg3、Rh2[124]、Rk1[135]在誘導肝癌細胞凋亡的時候也會引起細胞自噬而抑制細胞凋亡,這是不利于抗腫瘤作用發(fā)揮的。總之,目前對人參有效成分尤其是單體人參皂苷抗腫瘤的作用機制研究已經(jīng)取得了較大進展,其分子機制主要涉及對諸多相關基因、蛋白、蛋白酶、免疫細胞、細胞因子及相關信號通路等的調控與表達,具體見表 2。

表 2 人參抗腫瘤作用分子機制 Table 2 Molecular mechanisms of antitumor effect of P. ginseng

從表 2可知,人參有效成分可以調控很多相關信號通路,主要包括PI3K/Akt/mTOR、MAPKs(ERK、JNK、p38 MAPK)、JAK/STAT、Wnt/β-catenin、AMPK、MEK、EGFR、NF-κB、TGF-β等。人參皂苷等成分能夠直接或間接地使這些通路大多數(shù)被抑制,而少數(shù)被激活,從而作用于信號靶點發(fā)揮抗腫瘤作用。人參皂苷等成分也能雙向調節(jié)某些信號通路,如人參皂苷Rg3既可通過抑制p38 MAPK通路激活而抑制MMP-2的表達,又可激活p38 MAPK信號而使AQP1表達下調,其目的都是抑制腫瘤細胞的侵襲和轉移。

大量的實驗數(shù)據(jù)已經(jīng)證明人參具有確切的抗腫瘤作用,其藥效物質基礎、分子作用機制也已基本明確,但也存在一些缺陷與不足。目前的研究結果大多是基于體外細胞實驗也有少數(shù)是通過基因芯片技術手段得出的結論,而體內動物實驗數(shù)據(jù)相對較少。以人參中性淀粉樣葡聚糖來說,其由于具有較強的免疫調節(jié)作用而在體內發(fā)揮較好的抗腫瘤活性,但在體外實驗發(fā)現(xiàn)其活性很弱。同樣,在體外活性好但在體內不一定好,所以對于藥效物質基礎甚至是分子機制的研究要注重體內外結合進行實驗研究。

近年來利用基因芯片技術探討藥物的分子作用機制是一個新的手段,如An等[136]采用miRNA微陣列分析發(fā)現(xiàn)人參皂苷Rh2在非小細胞肺癌使44個miRNAs表達上調和24個miRNAs表達下調,這些miRNAs表達的變化涉及血管生成、細胞凋亡和細胞增殖。但人參皂苷對這些miRNAs及其基因靶點表達的調控需結合體內外實驗數(shù)據(jù)才能反映出真實的體內變化過程。目前人參多糖、人參炔醇的抗腫瘤活性及其分子機制研究也比較少,如Jiao等[137]從人參中分離得到RG-I型果膠GPR-1、GPS-1及HG型果膠GPW-2、GPR-2和GPS-2,但目前尚未有相關抗腫瘤活性的報道。

此外,也存在一些問題,如人參皂苷對細胞自噬的多重影響問題等。因此在今后的深入研究和開發(fā)中,亟需完善以下幾個方面:(1)利用現(xiàn)代分子生物學技術如基因芯片技術、分子標記技術等對人參有效成分的抗腫瘤作用的分子作用機制深入探討,并進一步通過體內實驗方法進行驗證;(2)進一步研究人參多糖與人參炔醇類成分的抗腫瘤作用及其分子機制和構效關系;(3)研究人參抗腫瘤作用涉及的相關信號轉導通路之間的聯(lián)系;(4)擴展基于單體化合物的人參抗腫瘤活性物質的篩選;(5)進行各種有效成分的抗腫瘤效果的對比研究以優(yōu)選出最佳的抗某些/種腫瘤的活性成分,并對不同有效成分進行組合優(yōu)化研究;(6)研究人參皂苷等單體成分的體內代謝過程和變化以及如何調控這些有效成分在人體內的定向轉化,以提高抗腫瘤效果。人參中富含抗腫瘤活性成分,目前已經(jīng)有單體人參皂苷Rg3開發(fā)成為中藥1類新藥用于多種癌癥的輔助治療,將來有望更多的人參活性成分為臨床治療各種腫瘤提供安全有效的天然藥物及制劑。

參考文獻

[1]馮彥. 人參藥理作用及臨床應用研究進展[J].中醫(yī)臨床研究, 2013, 5(6):121–122.[2]黎陽, 張鐵軍, 劉素香, 等. 人參化學成分和藥理研究進展[J].中草藥, 2009, 40(1):164–166.[3]楊秀偉. 人參中三萜類化學成分的研究[J].中國現(xiàn)代中藥, 2016, 18(1):7–15.[4]楊秀偉. 人參化學成分的藥物代謝動力學研究[J].中國現(xiàn)代中藥, 2016, 18(1):16–35.[5]Fu Y, Yin Z, Wu L, et al. Fermentation of ginseng extracts by Penicillium simplicissimum GS33 and anti-ovarian cancer activity of fermented products[J].World J Microbiol Biotechnol, 2014, 30(3): 1019–1025.DOI:10.1007/s11274-013-1520-0[6]Jin Y, Jung S Y, Kim Y J, et al. Microbial deglycosylation and ketonization of ginsenoside by Cladosporium cladosporioide and their anticancer activity[J].Antonie Van Leeuwenhoek, 2016, 109(2): 179–185.DOI:10.1007/s10482-015-0619-8[7]Xie J T, Du G J, McEntee E, et al. Effects of triterpenoid glycosides from fresh ginseng berry on SW480 human colorectal cancer cell line[J].Cancer Res Treat, 2011, 43(1): 49–55.DOI:10.4143/crt.2011.43.1.49[8]Lee D G, Lee A Y, Kim K T, et al. Novel dammarane-type triterpene saponins from Panax ginseng root[J].Chem Pharm Bull, 2015, 63(11): 927–934.DOI:10.1248/cpb.c15-00302[9]Shangguan W J, Li H, Zhang Y H. Induction of G2/M phase cell cycle arrest and apoptosis by ginsenoside Rf in human osteosarcoma MG63 cells through the mitochondrial pathway[J].Oncol Rep, 2014, 31(1): 305–313.[10]Shin J Y, Lee J M, Shin H S, et al. Anti-cancer effect of ginsenoside F2 against glioblastoma multiforme in xenograft model in SD rats[J].J Ginseng Res, 2012, 36(1): 86–92.DOI:10.5142/jgr.2012.36.1.86[11]Zhao C, Su G, Wang X, et al. Antitumor activity of ginseng sapogenins, 25-OH-PPD and 25-OCH3-PPD, on gastric cancer cells[J].Biotechnol Lett, 2016, 38(1): 43–50.DOI:10.1007/s10529-015-1964-4[12]Wang Y, Huang M, Sun R, et al. Extraction, characterization of a ginseng fruits polysaccharide and its immune modulating activities in rats with Lewis lung carcinoma[J].Carbohydr Polym, 2015, 127: 215–221.DOI:10.1016/j.carbpol.2015.03.070[13]Li C, Tian Z N, Cai J P, et al. Panax ginseng polysaccharide induces apoptosis by targeting Twist/AKR1C2/NF-1 pathway in human gastric cancer[J].Carbohydr Polym, 2014, 102(1): 103–109.[14]Li C, Cai J, Geng J, et al. Purification, characterization and anticancer activity of a polysaccharide from Panax ginseng[J].Int J Biol Macromol, 2012, 51(5): 968–973.DOI:10.1016/j.ijbiomac.2012.06.031[15]Kim B, Choi S, Suh H, et al. Bitterness reduction and enzymatic transformation of ginsenosides from korean red ginseng (Panax ginseng) extract[J].J Food Biochem, 2011, 35(4): 1267–1282.DOI:10.1111/jfbc.2011.35.issue-4[16]Zhang K, Li Y. Effects of ginsenoside compound K combined with cisplatin on the proliferation, apoptosis and epithelial mesenchymal transition in MCF-7 cells of human breast cancer[J].Pharm Biol, 2016, 54(4): 561–568.DOI:10.3109/13880209.2015.1101142[17]Zhang Y, Liu Q Z, Xing S P, et al. Inhibiting effect of Endostar combined with ginsenoside Rg3 on breast cancer tumor growth in tumor-bearing mice[J].Asian Pac J Trop Med, 2016, 9(2): 180–183.DOI:10.1016/j.apjtm.2016.01.010[18]陳哲京, 程駿, 黃穎鵬, 等. 術后采用人參皂甙Rg3聯(lián)合絲裂霉素加呋喃尿嘧啶方案對進展期胃癌的療效[J].中華胃腸外科雜志, 2007, 10(1):64–66.[19]Ben-Eltriki M, Deb S, Adomat H, et al. Calcitriol and 20(S)-protopanaxadiol synergistically inhibit growth and induce apoptosis in human prostate cancer cells[J].J Steroid Biochem Mol Biol, 2016, 158: 207–219.DOI:10.1016/j.jsbmb.2015.12.002[20]Wang C Z, Zhang Z, Wan J Y, et al. Protopanaxadiol, an active ginseng metabolite, significantly enhances the effects of fluorouracil on colon cancer[J].Nutrients, 2015, 7(2): 799–814.DOI:10.3390/nu7020799[21]Shin H J, Kim Y S, Kwak Y S, et al. Enhancement of antitumor effects of paclitaxel (taxol) in combination with red ginseng acidic polysaccharide (RGAP)[J].Planta Med, 2004, 70(11): 1033–1038.DOI:10.1055/s-2004-832643[22]Kim K H, Lee Y S, Jung I S, et al. Acidic polysaccharide from Panax ginseng, ginsan, induces Th1 cell and macrophage cytokines and generates LAK cells in synergy with rIL-2[J].Planta Med, 1998, 64(2): 110–115.DOI:10.1055/s-2006-957385[23]Park J Y, Choi P, Kim H K, et al. Increase in apoptotic effect of Panax ginseng by microwave processing in human prostate cancer cells:in vitro and in vivo studies[J].J Ginseng Res, 2016, 40(1): 62–67.DOI:10.1016/j.jgr.2015.04.007[24]Quan K, Liu Q, Wan J Y, et al. Rapid preparation of rare ginsenosides by acid transformation and their structure-activity relationships against cancer cells[J].Sci Rep, 2015.DOI:10.1038/srep08598[25]Oh J, Jeon S B, Lee Y, et al. Fermented red ginseng extract inhibits cancer cell proliferation and viability[J].J Med Food, 2015, 18(4): 421–428.DOI:10.1089/jmf.2014.3248[26]孫娜, 徐鋼, 徐珊, 等. 人參炮制對其化學成分和藥理作用的影響[J].中國藥房, 2016, 27(6):857–859.[27]Wang C Z, Anderson S, Du W, et al. Red ginseng and cancer treatment[J].Chin J Nat Med, 2016, 14(1): 7–16.[28]He B C, Gao J L, Luo X, et al. Ginsenoside Rg3 inhibits colorectal tumor growth through the down-regulation of Wnt/ss-catenin signaling[J].Int J Oncol, 2011, 38(2): 437–445.[29]Lee S Y, Kim G T, Roh S H, et al. Proteomic analysis of the anti-cancer effect of 20S-ginsenoside Rg3 in human colon cancer cell lines[J].Biosci Biotechnol Biochem, 2009, 73(4): 811–816.DOI:10.1271/bbb.80637[30]Lee S Y, Kim G T, Roh S H, et al. Proteome changes related to the anti-cancer activity of HT29 cells by the treatment of ginsenoside Rd[J].Pharmazie, 2009, 64(4): 242–247.[31]Kim J Y, Lee K W, Kim S H, et al. Inhibitory effect of tumor cell proliferation and induction of G2/M cell cycle arrest by panaxytriol[J].Planta Med, 2002, 68(2): 119–122.DOI:10.1055/s-2002-20240[32]王穎, 朱海濤, 黃文斯, 等. 人參炔醇體外抑制人胰腺癌SW1990細胞遷移作用研究[J].中華腫瘤防治雜志, 2015, 22(21):1662–1666.[33]Shan X, Fu Y S, Aziz F, et al. Ginsenoside Rg3 inhibits melanoma cell proliferation through down-regulation of histone deacetylase 3(HDAC3) and increase of p53 acetylation[J].PLoS One, 2014.DOI:10.1371/journal.pone.0115401[34]Liu Z H, Li J, Xia J, et al. Ginsenoside 20(S)-Rh2 as potent natural histone deacetylase inhibitors suppressing the growth of human leukemia cells[J].Chem Biol Interact, 2015, 242: 227–234.DOI:10.1016/j.cbi.2015.10.014[35]Aziz F, Wang X, Liu J, et al. Ginsenoside Rg3 induces FUT4-mediated apoptosis in H. pylori CagA-treated gastric cancer cells by regulating SP1 and HSF1 expressions[J].Toxicol In Vitro, 2016, 31: 158–166.DOI:10.1016/j.tiv.2015.09.025[36]Li J, Liu T, Zhao L, et al. Ginsenoside 20(S)-Rg3 inhibits the Warburg effect through STAT3 pathways in ovarian cancer cells[J].Int J Oncol, 2015, 46(2): 775–781.[37]You Z M, Zhao L, Xia J, et al. Down-regulation of phosphoglucose isomerase/autocrine motility factor enhances gensenoside Rh2 pharmacological action on leukemia KG1alpha cells[J].Asian Pac J Cancer Prev, 2014, 15(3): 1099–1104.DOI:10.7314/APJCP.2014.15.3.1099[38]Li Y, Yang T, Li J, et al. Inhibition of multiple myeloma cell proliferation by ginsenoside Rg3 via reduction in the secretion of IGF-1[J].Mol Med Rep, 2016, 14(3): 2222–2230.[39]Kang J H, Song K H, Woo J K, et al. Ginsenoside Rp1 from Panax ginseng exhibits anti-cancer activity by down-regulation of the IGF-1R/Akt pathway in breast cancer cells[J].Plant Foods Hum Nutr, 2011, 66(3): 298–305.DOI:10.1007/s11130-011-0242-4[40]Chen W, Qiu Y. Ginsenoside Rh2 targets EGFR by up-regulation of miR-491 to enhance anti-tumor activity in hepatitis B virus-related hepatocellular carcinoma[J].Cell Biochem Biophys, 2015, 72(2): 325–331.DOI:10.1007/s12013-014-0456-9[41]Wu N, Wu G C, Hu R, et al. Ginsenoside Rh2 inhibits glioma cell proliferation by targeting microRNA-128[J].Acta Pharmacol Sin, 2011, 32(3): 345–353.DOI:10.1038/aps.2010.220[42]Park E H, Kim Y J, Yamabe N, et al. Stereospecific anticancer effects of ginsenoside Rg3 epimers isolated from heat-processed American ginseng on human gastric cancer cell[J].J Ginseng Res, 2014, 38(1): 22–27.DOI:10.1016/j.jgr.2013.11.007[43]Kim S J, Kim A K. Anti-breast cancer activity of fine black ginseng (Panax ginseng Meyer.) and ginsenoside Rg5[J].J Ginseng Res, 2015, 39(2): 125–134.DOI:10.1016/j.jgr.2014.09.003[44]Chung K S, Cho S H, Shin J S, et al. Ginsenoside Rh2 induces cell cycle arrest and differentiation in human leukemia cells by upregulating TGF-beta expression[J].Carcinogenesis, 2013, 34(2): 331–340.DOI:10.1093/carcin/bgs341[45]Cheng C C, Yang S M, Huang C Y, et al. Molecular mechanisms of ginsenoside Rh2-mediated G1 growth arrest and apoptosis in human lung adenocarcinoma A549 cells[J].Cancer Chemother Pharmacol, 2005, 55(6): 531–540.DOI:10.1007/s00280-004-0919-6[46]Choi S, Kim T W, Singh S V. Ginsenoside Rh2-mediated G1 phase cell cycle arrest in human breast cancer cells is caused by p15 Ink4B and p27 Kip1-dependent inhibition of cyclin-dependent kinases[J].Pharm Res, 2009, 26(10): 2280–2288.DOI:10.1007/s11095-009-9944-9[47]Zhang Z, Du G J, Wang C Z, et al. Compound K, a ginsenoside metabolite, inhibits colon cancer growth via multiple pathways including p53-p21 interactions[J].Int J Mol Sci, 2013, 14(2): 2980–2995.DOI:10.3390/ijms14022980[48]Wang W, Rayburn E R, Hao M, et al. Experimental therapy of prostate cancer with novel natural product anti-cancer ginsenosides[J].Prostate, 2008, 68(8): 809–819.DOI:10.1002/pros.v68:8[49]Guo X X, Li Y, Sun C, et al. p53-dependent Fas expression is critical for ginsenoside Rh2 triggered caspase-8 activation in HeLa cells[J].Protein Cell, 2014, 5(3): 224–234.DOI:10.1007/s13238-014-0027-2[50]Zhang Z, Li Z, Wu X, et al. TRAIL pathway is associated with inhibition of colon cancer by protopanaxadiol[J].J Pharmacol Sci, 2015, 127(1): 83–91.DOI:10.1016/j.jphs.2014.11.003[51]Lee J Y, Jung K H, Morgan M J, et al. Sensitization of TRAIL-induced cell death by 20(S)-ginsenoside Rg3 via CHOP-mediated DR5 upregulation in human hepatocellular carcinoma cells[J].Mol Cancer Ther, 2013, 12(3): 274–285.DOI:10.1158/1535-7163.MCT-12-0054[52]Kim J S, Joo E J, Chun J, et al. Induction of apoptosis by ginsenoside Rk1 in SK-MEL-2-human melanoma[J].Arch Pharm Res, 2012, 35(4): 717–722.DOI:10.1007/s12272-012-0416-0[53]Lee D G, Jang S I, Kim Y R, et al. Anti-proliferative effects of ginsenosides extracted from mountain ginseng on lung cancer[J].Chin J Integr Med, 2016, 22(5): 344–352.DOI:10.1007/s11655-014-1789-8[54]Wang J H, Nao J F, Zhang M, et al. 20(S)-ginsenoside Rg3 promotes apoptosis in human ovarian cancer HO-8910 cells through PI3K/Akt and XIAP pathways[J].Tumour Biol, 2014, 35(12): 11985–11994.DOI:10.1007/s13277-014-2497-5[55]Tang X P, Tang G D, Fang C Y, et al. Effects of ginsenoside Rh2 on growth and migration of pancreatic cancer cells[J].World J Gastroenterol, 2013, 19(10): 1582–1592.DOI:10.3748/wjg.v19.i10.1582[56]Park S, Lee H J, Jeong S J, et al. Inhibition of JAK1/STAT3 signaling mediates compound K-induced apoptosis in human multiple myeloma U266 cells[J].Food Chem Toxicol, 2011, 49(6): 1367–1372.DOI:10.1016/j.fct.2011.03.021[57]Jian J, Hu Z F, Huang Y. Effect of ginsenoside Rg3 on Pim-3 and Bad proteins in human pancreatic cancer cell line PANC-1[J].Chin J Cancer, 2009, 28(5): 461–465.[58]Kim B M, Kim D H, Park J H, et al. Ginsenoside Rg3 inhibits constitutive activation of NF-kappaB signaling in human breast cancer (MDA-MB-231) cells:ERK and Akt as potential upstream targets[J].J Cancer Prev, 2014, 19(1): 23–30.DOI:10.15430/JCP.2014.19.1.23[59]Wang X, Wang Y. Ginsenoside Rh2 mitigates pediatric leukemia through suppression of Bcl-2 in leukemia cells[J].Cell Physiol Biochem, 2015, 37(2): 641–650.DOI:10.1159/000430383[60]Kim Y J, Kwon H C, Ko H, et al. Anti-tumor activity of the ginsenoside Rk1 in human hepatocellular carcinoma cells through inhibition of telomerase activity and induction of apoptosis[J].Biol Pharm Bull, 2008, 31(5): 826–830.DOI:10.1248/bpb.31.826[61]Kim B J. Involvement of melastatin type transient receptor potential 7 channels in ginsenoside Rd-induced apoptosis in gastric and breast cancer cells[J].J Ginseng Res, 2013, 37(2): 201–209.DOI:10.5142/jgr.2013.37.201[62]Shin K O, Seo C H, Cho H H, et al. Ginsenoside compound K inhibits angiogenesis via regulation of sphingosine kinase-1 in human umbilical vein endothelial cells[J].Arch Pharm Res, 2014, 37(9): 1183–1192.DOI:10.1007/s12272-014-0340-6[63]Kim D Y, Park M W, Yuan H D, et al. Compound K induces apoptosis via CAMK-Ⅳ/AMPK pathways in HT-29 colon cancer cells[J].J Agric Food Chem, 2009, 57(22): 10573–10578.DOI:10.1021/jf902700h[64]Zhang Y L, Zhang R, Xu H L, et al. 20(S)-protopanaxadiol triggers mitochondrial-mediated apoptosis in human lung adenocarcinoma A549 cells via inhibiting the PI3K/Akt signaling pathway[J].Am J Chin Med, 2013, 41(5): 1137–1152.DOI:10.1142/S0192415X13500778[65]Li J, Wei Q, Zuo G W, et al. Ginsenoside Rg1 induces apoptosis through inhibition of the EpoR-mediated JAK2/STAT5 signalling pathway in the TF-1/Epo human leukemia cell line[J].Asian Pac J Cancer Prev, 2014, 15(6): 2453–2459.DOI:10.7314/APJCP.2014.15.6.2453[66]Choi Y J, Lee H J, Kang D W, et al. Ginsenoside Rg3 induces apoptosis in the U87MG human glioblastoma cell line through the MEK signaling pathway and reactive oxygen species[J].Oncol Rep, 2013, 30(3): 1362–1370.[67]Huang J, Peng K, Wang L, et al. Ginsenoside Rh2 inhibits proliferation and induces apoptosis in human leukemia cells via TNF-alpha signaling pathway[J].Acta Biochim Biophys Sin, 2016, 48(8): 750–755.DOI:10.1093/abbs/gmw049[68]Park E K, Lee E J, Lee S H, et al. Induction of apoptosis by the ginsenoside Rh2 by internalization of lipid rafts and caveolae and inactivation of Akt[J].Br J Pharmacol, 2010, 160(5): 1212–1223.DOI:10.1111/j.1476-5381.2010.00768.x[69]Mao Q, Zhang P H, Wang Q, et al. Ginsenoside F2 induces apoptosis in humor gastric carcinoma cells through reactive oxygen species-mitochondria pathway and modulation of ASK-1/JNK signaling cascade in vitro and in vivo[J].Phytomedicine, 2014, 21(4): 515–522.DOI:10.1016/j.phymed.2013.10.013[70]Choi K, Choi C. Proapoptotic ginsenosides compound K and Rh2 enhance Fas-induced cell death of human astrocytoma cells through distinct apoptotic signaling pathways[J].Cancer Res Treat, 2009, 41(1): 36–44.DOI:10.4143/crt.2009.41.1.36[71]Wang H, Jiang D, Liu J, et al. Compound K induces apoptosis of bladder cancer T24 cells via reactive oxygen species-mediated p38 MAPK pathway[J].Cancer Biother Radiopharm, 2013, 28(8): 607–614.DOI:10.1089/cbr.2012.1468[72]范家銘, 劉澤洪, 李靜, 等. 人參多糖介導Wnt/β-catenin信號轉導誘導人鼻咽癌細胞CNE-2的凋亡[J].中國中藥雜志, 2013, 38(19):3332–3337.[73]Law C K, Kwok H H, Poon P Y, et al. Ginsenoside compound K induces apoptosis in nasopharyngeal carcinoma cells via activation of apoptosis-inducing factor[J].Chin Med, 2014, 9(1): 1–11.DOI:10.1186/1749-8546-9-1[74]Kim H S, Lim J M, Kim J Y, et al. Panaxydol, a component of Panax ginseng, induces apoptosis in cancer cells through EGFR activation and ER stress and inhibits tumor growth in mouse models[J].Int J Cancer, 2016, 138(6): 1432–1441.DOI:10.1002/ijc.29879[75]Wu K, Li N, Sun H, et al. Endoplasmic reticulum stress activation mediates Ginseng Rg3-induced anti-gallbladder cancer cell activity[J].Biochem Biophys Res Commun, 2015, 466(3): 369–375.DOI:10.1016/j.bbrc.2015.09.030[76]Breckenridge D G, Germain M, Mathai J P, et al. Regulation of apoptosis by endoplasmic reticulum pathways[J].Oncogene, 2003, 22(53): 8608–8618.DOI:10.1038/sj.onc.1207108[77]Zuo G, Guan T, Chen D, et al. Total saponins of Panax ginseng induces K562 cell differentiation by promoting internalization of the erythropoietin receptor[J].Am J Chin Med, 2009, 37(4): 747–757.DOI:10.1142/S0192415X09007211[78]余瀟苓, 高瑞蘭, 尹利明, 等. 低極性人參皂苷Rh4對白血病細胞系K562細胞增殖抑制及誘導分化作用的研究[J].中華血液學雜志, 2015, 36(4):347–349.[79]Kim S H, Cho S S, Simkhada J R, et al. Enhancement of 1, 25-dihydroxyvitamin D3-and all-trans retinoic acid-induced HL-60 leukemia cell differentiation by Panax ginseng[J].Biosci Biotechnol Biochem, 2009, 73(5): 1048–1053.DOI:10.1271/bbb.80823[80]Zeng X L, Tu Z G. In vitro induction of differentiation by ginsenoside Rh2 in SMMC-7721 hepatocarcinoma cell line[J].Pharmacol Toxicol, 2003, 93(6): 275–283.DOI:10.1111/pto.2003.93.issue-6[81]王澤劍, 吳英理, 林琦, 等. 人參炔醇對HL-60細胞體外誘導分化作用的研究[J].中草藥, 2003, 34(8):736–738.[82]Hai J, Lin Q, Zhang H, et al. Cyclic AMP-dependent regulation of differentiation of rat C6 glioma cells by panaxydol[J].Neurol Res, 2009, 31(3): 274–279.DOI:10.1179/174313209X380919[83]Guo L, Song L, Wang Z, et al. Panaxydol inhibits the proliferation and induces the differentiation of human hepatocarcinoma cell line HepG2[J].Chem Biol Interact, 2009, 181(1): 138–143.DOI:10.1016/j.cbi.2009.04.015[84]李建平, 何軒, 姜蓉, 等. 人參多糖對K562細胞基因表達譜的影響[J].中草藥, 2011, 42(5):940–943.[85]Lee Y J, Son Y M, Gu M J, et al. Ginsenoside fractions regulate the action of monocytes and their differentiation into dendritic cells[J].J Ginseng Res, 2015, 39(1): 29–37.DOI:10.1016/j.jgr.2014.07.003[86]Wang Y, Hao Y, Lou J L, et al. Effect of ginsenoside Rg1 and Rh1 on the anti-tumor activity of dendritic cell[J].Chin J Pathophys, 2004, 20(10): 18–23.[87]Wang Y, Liu Y, Zhang X Y, et al. Ginsenoside Rg1 regulates innate immune responses in macrophages through differentially modulating the NF-kappaB and PI3K/Akt/mTOR pathways[J].Int Immunopharmacol, 2014, 23(1): 77–84.DOI:10.1016/j.intimp.2014.07.028[88]Wu R, Ru Q, Chen L, et al. Stereospecificity of ginsenoside Rg3 in the promotion of cellular immunity in hepatoma H22-bearing mice[J].J Food Sci, 2014, 79(7): H1430–H1435.DOI:10.1111/jfds.2014.79.issue-7[89]Son K J, Choi K R, Lee S J, et al. Immunogenic cell death induced by ginsenoside Rg3:significance in dendritic cell-based anti-tumor immunotherapy[J].Immune Netw, 2016, 16(1): 75–84.DOI:10.4110/in.2016.16.1.75[90]Byeon S E, Lee J, Kim J H, et al. Molecular mechanism of macrophage activation by red ginseng acidic polysaccharide from Korean red ginseng[J].Mediators Inflamm, 2012.DOI:10.1155/2012/732860[91]Song J Y, Han S K, Son E H, et al. Induction of secretory and tumoricidal activities in peritoneal macrophages by ginsan[J].Int Immunopharmacol, 2002, 2(7): 857–865.DOI:10.1016/S1567-5769(01)00211-9[92]Wang J, Zuo G, Li J, et al. Induction of tumoricidal activity in mouse peritoneal macrophages by ginseng polysaccharide[J].Int J Biol Macromol, 2010, 46(4): 389–395.DOI:10.1016/j.ijbiomac.2010.02.007[93]Zhou X, Shi H, Jiang G, et al. Antitumor activities of ginseng polysaccharide in C57BL/6 mice with Lewis lung carcinoma[J].Tumour Biol, 2014, 35(12): 12561–12566.DOI:10.1007/s13277-014-2576-7[94]Gao X G, Zhi Y, Sun L, et al. The inhibitory effects of a rhamnogalacturonan I (RG-I) domain from ginseng pectin on galectin-3 and its structure-activity relationship[J].J Biol Chem, 2013, 288(47): 33953–33965.DOI:10.1074/jbc.M113.482315[95]Fujimoto J, Sakaguchi H, Aoki I, et al. Inhibitory effect of ginsenoside-Rb2 on invasiveness of uterine endometrial cancer cells to the basement membrane[J].Eur J Gynaecol Oncol, 2001, 22(5): 339–341.[96]Li L, Wang Y, Qi B, et al. Suppression of PMA-induced tumor cell invasion and migration by ginsenoside Rg1 via the inhibition of NF-kappaB-dependent MMP-9 expression[J].Oncol Rep, 2014, 32(5): 1779–1786.[97]Lee S G, Kang Y J, Nam J O. Anti-metastasis effects of ginsenoside Rg3 in B16F10 cells[J].J Microbiol Biotechnol, 2015, 25(12): 1997–2006.DOI:10.4014/jmb.1506.06002[98]Guo J Q, Zheng Q H, Chen H, et al. Ginsenoside Rg3 inhibition of vasculogenic mimicry in pancreatic cancer through downregulation of VEcadherin/EphA2/MMP9/MMP2 expression[J].Int J Oncol, 2014, 45(3): 1065–1072.[99]Jung J S, Ahn J H, Le T K, et al. Protopanaxatriol ginsenoside Rh1 inhibits the expression of matrix metalloproteinases and the in vitro invasion/migration of human astroglioma cells[J].Neurochem Int, 2013, 63(2): 80–86.DOI:10.1016/j.neuint.2013.05.002[100]Kim S Y, Kim D H, Han S J, et al. Repression of matrix metalloproteinase gene expression by ginsenoside Rh2 in human astroglioma cells[J].Biochem Pharmacol, 2007, 74(11): 1642–1651.DOI:10.1016/j.bcp.2007.08.015[101]Yoon J H, Choi Y J, Cha S W, et al. Anti-metastatic effects of ginsenoside Rd via inactivation of MAPK signaling and induction of focal adhesion formation[J].Phytomedicine, 2012, 19(3/4): 284–292.[102]Kim H, Roh H S, Kim J E, et al. Compound K attenuates stromal cell-derived growth factor 1(SDF-1)-induced migration of C6 glioma cells[J].Nutr Res Pract, 2016, 10(3): 259–264.DOI:10.4162/nrp.2016.10.3.259[103]Shi Q, Li J, Feng Z, et al. Effect of ginsenoside Rh2 on the migratory ability of HepG2 liver carcinoma cells:recruiting histone deacetylase and inhibiting activator protein 1 transcription factors[J].Mol Med Rep, 2014, 10(4): 1779–1785.[104]Kim J W, Jung S Y, Kwon Y H, et al. Ginsenoside Rg3 attenuates tumor angiogenesis via inhibiting bioactivities of endothelial progenitor cells[J].Cancer Biol Ther, 2012, 13(7): 504–515.DOI:10.4161/cbt.19599[105]Kim Y J, Choi W I, Jeon B N, et al. Stereospecific effects of ginsenoside 20-Rg3 inhibits TGF-beta1-induced epithelial-mesenchymal transition and suppresses lung cancer migration, invasion and anoikis resistance[J].Toxicology, 2014, 322: 23–33.DOI:10.1016/j.tox.2014.04.002[106]Tian L, Shen D, Li X, et al. Ginsenoside Rg3 inhibits epithelial-mesenchymal transition (EMT) and invasion of lung cancer by down-regulating FUT4[J].Oncotarget, 2016, 7(2): 1619–1632.[107]Liu T, Zhao L, Zhang Y, et al. Ginsenoside 20(S)-Rg3 targets HIF-1alpha to block hypoxia-induced epithelial-mesenchymal transition in ovarian cancer cells[J].PLoS One, 2014.DOI:10.1371/journal.pone.0103887[108]Cai J P, Wu Y J, Li C, et al. Panax ginseng polysaccharide suppresses metastasis via modulating Twist expression in gastric cancer[J].Int J Biol Macromol, 2013, 57(6): 22–25.[109]Lin C Y, Tsai P H, Kandaswami C C, et al. Matrix metalloproteinase-9 cooperates with transcription factor Snail to induce epithelial-mesenchymal transition[J].Cancer Sci, 2011, 102(4): 815–827.DOI:10.1111/cas.2011.102.issue-4[110]Chen Q J, Zhang M Z, Wang L X. Gensenoside Rg3 inhibits hypoxia-induced VEGF expression in human cancer cells[J].Cell Physiol Biochem, 2010, 26(6): 849–858.DOI:10.1159/000323994[111]Li S, Gao Y, Ma W, et al. Ginsenoside Rh2 inhibits invasiveness of glioblastoma through modulation of VEGF-A[J].Tumour Biol, 2015.DOI:10.1007/s13277-015-3759-6[112]Sun H Y, Wei S P, Xu R C, et al. Sphingosine-1-phosphate induces human endothelial VEGF and MMP-2 production via transcription factor ZNF580:novel insights into angiogenesis[J].Biochem Biophys Res Commun, 2010, 395(3): 361–366.DOI:10.1016/j.bbrc.2010.04.019[113]Chetty C, Lakka S S, Bhoopathi P, et al. MMP-2 alters VEGF expression via alphaVbeta3 integrin-mediated PI3K/AKT signaling in A549 lung cancer cells[J].Int J Cancer, 2010, 127(5): 1081–1095.[114]Yue P Y, Wong D Y, Wu P K, et al. The angiosuppressive effects of 20(R)-ginsenoside Rg3[J].Biochem Pharmacol, 2006, 72(4): 437–445.DOI:10.1016/j.bcp.2006.04.034[115]Keung M H, Chan L S, Kwok H H, et al. Role of microRNA-520h in 20(R)-ginsenoside-Rg3-mediated angiosuppression[J].J Ginseng Res, 2016, 40(2): 151–159.DOI:10.1016/j.jgr.2015.07.002[116]唐泓波, 任玉萍, 張軍, 等. 應用IGF-1基因缺失小鼠研究IGF-1與乳腺腫瘤血管生成的關系[J].癌癥, 2007, 26(11):1215–1220.[117]Leung K W, Cheung L W, Pon Y L, et al. Ginsenoside Rb1 inhibits tube-like structure formation of endothelial cells by regulating pigment epithelium-derived factor through the oestrogen beta receptor[J].Br J Pharmacol, 2007, 152(2): 207–215.DOI:10.1038/sj.bjp.0707359[118]Kim J W, Jung S Y, Kwon Y H, et al. Ginsenoside Rg3 inhibits endothelial progenitor cell differentiation through attenuation of VEGF-dependent Akt/eNOS signaling[J].Phytother Res, 2012, 26(9): 1286–1293.DOI:10.1002/ptr.v26.9[119]Park T Y, Park M H, Shin W C, et al. Anti-metastatic potential of ginsenoside Rp1, a novel ginsenoside derivative[J].Biol Pharm Bull, 2008, 31(9): 1802–1805.DOI:10.1248/bpb.31.1802[120]王強, 吳美清, 趙玲輝, 等. 人參皂苷Rh2對小鼠移植瘤生長及對細胞間連接黏附分子表達的影響[J].中國中藥雜志, 2008, 33(18):2116–2119.[121]Chen X P, Qian L L, Jiang H, et al. Ginsenoside Rg3 inhibits CXCR4 expression and related migrations in a breast cancer cell line[J].Int J Clin Oncol, 2011, 16(5): 519–523.DOI:10.1007/s10147-011-0222-6[122]Pan X Y, Guo H, Han J, et al. Ginsenoside Rg3 attenuates cell migration via inhibition of aquaporin 1 expression in PC-3M prostate cancer cells[J].Eur J Pharmacol, 2012, 683(1/3): 27–34.[123]Ha Y W, Ahn K S, Lee J C, et al. Validated quantification for selective cellular uptake of ginsenosides on MCF-7 human breast cancer cells by liquid chromatography-mass spectrometry[J].Anal Bioanal Chem, 2010, 396(8): 3017–3025.DOI:10.1007/s00216-010-3515-0[124]Cheong J H, Kim H, Hong M J, et al. Stereoisomer-specific anticancer activities of ginsenoside Rg3 and Rh2 in HepG2 cells:disparity in cytotoxicity and autophagy-inducing effects due to 20(S)-epimers[J].Biol Pharm Bull, 2015, 38(1): 102–108.DOI:10.1248/bpb.b14-00603[125]周義發(fā), 臺桂花, 范玉瑩, 等.人參多糖結構與其抗腫瘤活性的關系[A]//中國吉林國際人參大會論文集[C].長春:長春中醫(yī)藥大學, 2012.[126]Cheng H, Li S, Fan Y, et al. Comparative studies of the antiproliferative effects of ginseng polysaccharides on HT-29 human colon cancer cells[J].Med Oncol, 2011, 28(1): 175–181.DOI:10.1007/s12032-010-9449-8[127]Fan Y, Cheng H, Li S, et al. Relationship of the inhibition of cell migration with the structure of ginseng pectic polysaccharides[J].Carbohydr Polym, 2010, 81(2): 340–347.DOI:10.1016/j.carbpol.2010.02.028[128]Zhang X, Li S, Sun L, et al. Further analysis of the structure and immunological activity of an RG-I type pectin from Panax ginseng[J].Carbohydr Polym, 2012, 89(2): 519–525.DOI:10.1016/j.carbpol.2012.03.039[129]李杰.人參須根中人參炔醇的結構確證及對肺癌細胞株A549的誘導分化作用研究[D].重慶:重慶理工大學, 2011.[130]Shi L, Pi Y, Luo C, et al. In vitro inhibitory activities of six gypenosides on human liver cancer cell line HepG2 and possible role of HIF-1alpha pathway in them[J].Chem Biol Interact, 2015, 238: 48–54.DOI:10.1016/j.cbi.2015.06.004[131]Kwak C W, Son Y M, Gu M J, et al. A bacterial metabolite, compound K, induces programmed necrosis in MCF-7 cells via GSK3beta[J].J Microbiol Biotechnol, 2015, 25(7): 1170–1176.DOI:10.4014/jmb.1505.05057[132]Yang Z, Zhao T, Liu H, et al. Ginsenoside Rh2 inhibits hepatocellular carcinoma through beta-catenin and autophagy[J].Sci Rep, 2016.DOI:10.1038/srep19383[133]Mai T T, Moon J, Song Y, et al. Ginsenoside F2 induces apoptosis accompanied by protective autophagy in breast cancer stem cells[J].Cancer Lett, 2012, 321(2): 144–153.DOI:10.1016/j.canlet.2012.01.045[134]Kim D G, Jung K H, Lee D G, et al. 20(S)-Ginsenoside Rg3 is a novel inhibitor of autophagy and sensitizes hepatocellular carcinoma to doxorubicin[J].Oncotarget, 2014, 5(12): 4438–4451.DOI:10.18632/oncotarget[135]Ko H, Kim Y J, Park J S, et al. Autophagy inhibition enhances apoptosis induced by ginsenoside Rk1 in hepatocellular carcinoma cells[J].Biosci Biotechnol Biochem, 2009, 73(10): 2183–2189.DOI:10.1271/bbb.90250[136]An I S, An S, Kwon K J, et al. Ginsenoside Rh2 mediates changes in the microRNA expression profile of human non-small cell lung cancer A549 cells[J].Oncol Rep, 2013, 29(2): 523–528.[137]Jiao L, Zhang X, Wang M, et al. Chemical and antihyperglycemic activity changes of ginseng pectin induced by heat processing[J].Carbohydr Polym, 2014, 114: 567–573.DOI:10.1016/j.carbpol.2014.08.018

相關知識

The Health Benefits of Dietary Fibre
Arts and health
Stress and Distress During Pregnancy: How to Protect Both Mother and Child
Research progress of correlation between sleep during pregnancy and offspring birth weight
表觀遺傳學——環(huán)境對基因表達的影響
Impacts of farmers engaging in organic farming on their well
The influence of lifestyle and psychological factors on obesity in an occupational population
CSF3R和行動控制對應激與健康飲食關系的調節(jié)作用:應激影響健康行為的個體化模型的初步證據(jù)
Pregnant women: addressing maternal mental health in Africa
情緒對飲食行為的影響

網(wǎng)址: Advance in components with antitumor effect of Panax ginseng and their mechanisms http://m.u1s5d6.cn/newsview338464.html

推薦資訊