機電裝備健康狀態(tài)評估研究進(jìn)展及發(fā)展趨勢
來源:泰然健康網(wǎng) 時間:2025年06月10日 22:18
1 曾聲奎, Pecht M G, 吳際. 故障預(yù)測與健康管理(PHM)技術(shù)的現(xiàn)狀與發(fā)展[J]. 航空學(xué)報, 2005, 26(5): 610-632. Zeng Sheng-kui, Pecht M G, Wu Ji. Status and development of failure prediction and health management (PHM) technology[J]. Acta Aeronautica Sinica, 2005, 26(5): 610-632.2 國家制造強國建設(shè)戰(zhàn)略咨詢委員會. 中國制造2025藍(lán)皮書(2017)[M]. 北京: 電子工業(yè)出版社, 2017.3 徐慶宏, 任和, 馬小駿. 民用飛機實時監(jiān)控與健康管理技術(shù)[M]. 上海: 上海交通大學(xué)出版社, 2018.4 劉宗長. 從人工智能到工業(yè)智能[J]. 軟件和集成電路, 2018(6): 34-39. Liu Zong-chang. From artificial intelligence to industrial intelligence[J]. Software and Integrated Circuits, 2018(6): 34-39.5 李杰.云上工業(yè)智能[M].北京:中信出版集團(tuán),2017.6 董興輝, 張鑫淼, 鄭凱, 等. 基于組合賦權(quán)和云模型的風(fēng)電機組健康狀態(tài)評估[J]. 太陽能學(xué)報, 2018, 2(4): 68-75. Dong Xing-hui, Zhang Xin-miao, Zheng Kai, et al. Wind turbine health status assessment based on combined weighting and cloud model[J]. Acta Energia Sinica, 2018, 2(4): 68-75.7 Zheng K, Han L N, Guo S L, et al. Fuzzy synthetic condition assessment of wind turbine based on combination weighting and cloud model[J]. Journal of Intelligent & Fuzzy Systems, 2017, 32(6): 4563-4572.8 Liu T I, Song S D, Liu G, et al. Online monitoring and measurements of tool wear for precision turning of stainless steel parts[J]. International Journal of Advanced Manufacturing Technology, 2017, 65(9-12): 1397-1407.9 胡姚剛, 李輝, 劉海濤, 等. 基于多類證據(jù)體方法的風(fēng)電機組健康狀態(tài)評估[J]. 太陽能學(xué)報, 2018, 39(2): 256-265. Hu Yao-gang, Li Hui, Liu Hai-tao, et al. Wind turbine health status assessment based on multi-class evidence body method[J]. Acta Energia Sinica, 2018, 39(2): 256-265.10 Sun Z X, Sun H X. Health status assessment for wind turbine with recurrent neural networks[J]. Mathematical Problems in Engineering. DOI: 10.1155/2018/6972481.
doi: 10.1155/2018/697248111 董玉亮, 顧煜炯. 基于保局投影與自組織映射的風(fēng)電機組故障預(yù)警方法[J]. 太陽能學(xué)報, 2015, 36(5): 1123-1129. Dong Yu-liang, Gu Yu-jiong. Wind turbine fault warning method based on security bureau projection and self-organizing mapping[J]. Acta Energia Sinica, 2015, 36(5): 1123-1129.12 鐘詩勝, 雷達(dá). 一種可用于航空發(fā)動機健康狀態(tài)預(yù)測的動態(tài)集成極端學(xué)習(xí)機模型[J]. 航空動力學(xué)報, 2016, 29(9): 2085-2090. Zhong Shi-sheng, Lei Da. A dynamic integrated extreme learning machine model that can be used to predict the health status of aero engines[J]. Journal of Aeronautical Dynamics, 2016, 29(9): 2085-2090.13 Tamilselvan P, Wang P F. Failure diagnosis using deep belief learning based health state classification[J]. Reliability Engineering & System Safety, 2020, 115: 124-135.14 Ma M, Sun C, Chen X F. Discriminative deep belief networks with ant colony optimization for health status assessment of machine[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(12): 3115-3125.15 Hanachi H, Liu J, Banerjee A, et al. A physics-based modeling approach for performance monitoring in gas turbine engines[J]. IEEE Transactions on Reliability, 2015, 64(1): 197-205.16 陳煜, 鞠紅飛, 魯峰, 等. 渦噴發(fā)動機健康狀態(tài)的帶約束非線性濾波估計[J]. 推進(jìn)技術(shù), 2016, 37(4): 741-748. Chen Yu, Ju Hong-fei, Lu Feng, et al. Constrained nonlinear filtering estimation of turbojet engine health state[J]. Propulsion Technology, 2016, 37(4): 741-748.17 Yin X J, Wang Z L, Zhang B C, et al. Health estimation of fan based on belief-rule-base expert system in turbofan engine gas-path[J]. Advances in Mechanical Engineering, 2017, 9(3): 1-11.18 Di Maio F, Hu J, Tse P, et al. Ensemble-approaches for clustering health status of oil sand pumps[J]. Expert Systems with Applications, 2020, 39(5): 4847-4859.19 王浩任, 黃亦翔, 趙帥, 等. 基于小波包和拉普拉斯特征值映射的柱塞泵健康評估方法[J]. 振動與沖擊, 2017, 36(22): 45-50. Wang Hao-ren, Huang Yi-xiang, Zhao Shuai, et al. Health assessment method of plunger pump based on wavelet packet and laplace eigenvalue mapping[J]. Journal of Vibration and Shock, 2017, 36(22): 45-50.20 Diez-Olivan A, Pagan J A, Khoa N L D, et al. Kernel-based support vector machines for automated health status assessment in monitoring sensor data[J]. International Journal of Advanced Manufacturing Technology, 2018, 95(1-4): 327-340.21 Arshad M, Islam S M, Khaliq A. Fuzzy logic approach in power transformers management and decision making[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 21(5): 2343-2354.22 王亮, 呂衛(wèi)民, 金永川. 一種多類型證據(jù)的合成評估方法[J]. 控制與決策, 2017, 12(11): 1973-1978. Wang Liang, Lv Wei-min, Jin Yong-chuan. A composite evaluation method for multiple types of evidence[J]. Control and Decision, 2017, 12(11): 1973-1978.23 Cheng J, Yu M. OTHR health status assessment using grey clustering method[C]∥3rd International Conference on Mechanical, Control and Computer Engineering, Huhhot, 2018: 494-497.24 崔建國, 林澤力, 呂瑞, 等. 基于模糊灰色聚類和組合賦權(quán)法的飛機健康狀態(tài)綜合評估方法[J]. 航空學(xué)報, 2014, 35(3): 764-772. Cui Jian-guo, Lin Ze-li, Lv Rui, et al. Comprehensive assessment method of aircraft health status based on fuzzy grey clustering and combined weighting method[J]. Acta Aeronautica Sinica, 2014, 35(3): 764-772.25 Wen J, Gao H L. Degradation assessment for the ball screw with variational autoencoder and kernel density estimation[J]. Advances in Mechanical Engineering, 2018, 10(9): 1-12.26 鄧超, 孫耀宗, 李嶸, 等. 基于隱Markov模型的重型數(shù)控機床健康狀態(tài)評估[J]. 計算機集成制造系統(tǒng), 2013, 19(3): 552-558. Deng Chao, Sun Yao-zong, Li Rong, et al. Health status assessment of heavy CNC machine tools based on hidden markov model[J]. Computer Integrated Manufacturing System, 2013, 19(3): 552-558.27 谷夢瑤, 陳友玲, 王新龍. 多退化變量下基于實時健康度的相似性壽命預(yù)測方法[J]. 計算機集成制造系統(tǒng), 2017, 23(2): 362-372. Gu Meng-yao, Chen You-ling, Wang Xin-long. Similarity life prediction method based on real-time health under multiple degradation variables[J]. Computer Integrated Manufacturing System, 2017, 23(2): 362-372.28 Yang J Y, Zhang Y Y, Zhu Y S. Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension[J]. Mechanical Systems and Signal Processing, 2017, 21(5): 2012-2024.29 Jiang H M, Chen J, Dong G M. Hidden Markov model and nuisance attribute projection based bearing performance degradation assessment[J]. Mechanical Systems and Signal Processing, 2016, 72: 184-205.30 Yin X J, Zhang B C, Zhou Z J, et al. A new health estimation model for CNC machine tool based on infinite irrelevance and belief rule base[J]. Microelectronics Reliability, 2018, 84: 187-196.31 李巍華, 李靜, 張紹輝. 連續(xù)隱半馬爾科夫模型在軸承性能退化評估中的應(yīng)用[J]. 振動工程學(xué)報, 2016, 27(4): 613-620. Li Wei-hua, Li Jing, Zhang Shao-hui. Application of continuous hidden semi-Markov model in bearing performance degradation assessment[J]. Journal of Vibration Engineering, 2016, 27(4): 613-620.32 Liao Z R, Gao D, Lu Y, et al. Multi-scale hybrid HMM for tool wear condition monitoring[J]. International Journal of Advanced Manufacturing Technology, 2016, 84: 2437-2448.33 Lu C, Li T Y, Liu H M. Online milling tool condition monitoring with a single continuous hidden Markov models approach[J]. Journal of Vibroengineering, 2017, 16(5): 2448-2457.34 Yu J S, Liang S, Tang D Y, et al. A weighted hidden Markov model approach for continuous-state tool wear monitoring and tool life prediction[J]. International Journal of Advanced Manufacturing Technology, 2017, 91: 201-211.35 Kong D D, Chen Y J, Li N. Gaussian process regression for tool wear prediction[J]. Mechanical Systems and Signal Processing, 2018, 104: 556-574.36 Kong D D, Chen Y J, Li N. Hidden semi-markov model-based method for tool wear estimation in milling process[J]. International Journal of Advanced Manufacturing Technology, 2017, 92: 3647-3657.37 Kong D D, Chen Y J, Li N. Force-based tool wear estimation for milling process using gaussian mixture hidden markov models[J]. International Journal of Advanced Manufacturing Technology, 2017, 92: 2853-2865.38 劉美芳, 余建波, 尹紀(jì)庭. 基于貝葉斯推論和自組織映射的軸承性能退化評估方法[J]. 計算機集成制造系統(tǒng), 2018, 18(10): 269-278. Liu Mei-fang, Yu Jian-bo, Yin Ji-ting. Bearing performance degradation assessment method based on bayesian inference and self-organizing map[J]. Computer Integrated Manufacturing System, 2018, 18(10): 269-278.39 Guo L, Li N P, Jia F, et al. A recurrent neural network based health indicator for remaining useful life prediction of bearings[J]. Neurocomputing, 2017, 240: 98-109.40 Khoualdia T, Hadjadj A E, Bouacha K, et al. Multi-objective optimization of ANN fault diagnosis model for rotating machinery using grey rational analysis in taguchi method[J]. International Journal of Advanced Manufacturing Technology, 2017, 89: 3009-3020.41 Jiang H M, Chen J, Dong G M, et al. Study on hankel matrix-based SVD and its application in rolling element bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2015, 52/53: 338-359.42 Lee G Y, Kim M, Quan Y J, et al. Machine health management in smart factory: a review[J]. Journal of Mechanical Science and Technology, 2018, 32(3): 987-1009.43 Luo S R, Cheng J S, Ao H. Application of LCD-SVD technique and CRO-SVM method to fault diagnosis for roller bearing[J]. Shock and Vibration, 2015, 2015: 847802.44 Yuan N Q, Yang W L, Kang B, et al. Signal fusion-based deep fast random forest method for machine health assessment[J]. Journal of Manufacturing Systems, 2018, 48: 1-8.45 李洪雪, 李世武, 孫文財, 等. 重型危險品半掛列車行駛工況的構(gòu)建[J]. 吉林大學(xué)學(xué)報: 工學(xué)版, 2021, 51(5): 1700-1707. Li Hong-xue, Li Shi-wu, Sun Wen-cai, et al. Construction of driving conditions of heavy-duty dangerous goods semitrailer trains[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1700-1707.46 Benkedjouh T, Medjaher K, Zerhouni N, et al. Health assessment and life prediction of cutting tools based on support vector regression[J]. Journal of Intelligent Manufacturing, 2015, 26(2): 213-223.47 徐宇亮, 孫際哲, 陳西宏, 等. 電子設(shè)備健康狀態(tài)評估與故障預(yù)測方法[J]. 系統(tǒng)工程與電子技術(shù), 2015, 34(5): 1068-1072. Xu Yu-liang, Sun Ji-zhe, Chen Xi-hong, et al. Methods of electronic equipment health status assessment and failure prediction[J]. Systems Engineering and Electronic Technology, 2015, 34(5): 1068-1072.48 Ma M, Chen X F, Zhang X L, et al. Locally linear embedding on grassmann manifold for performance degradation assessment of bearings[J]. IEEE Transactions on Reliability, 2017, 66(2): 467-477.49 Li F, Chyu M K K, Wang J X, et al. Life grade recognition of rotating machinery based on Supervised orthogonal linear local tangent space alignment and optimal supervised fuzzy c-means clustering[J]. Measurement, 2015, 73: 384-400.50 Liao L X, Jin W J, Pavel R. Enhanced restricted boltzmann machine with prognosability regularization for prognostics and health assessment[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 7076-7083.51 Medjaher K, Tobon-Mejia D A, Zerhouni N. Remaining useful life estimation of critical components with application to bearings[J]. IEEE Transactions on Reliability, 2019, 61(2): 292-302.52 Wang T. Bearing life prediction based on vibration signals: a case study and lessons learned[C]∥IEEE Conference on Prognostics and Health Management, Denver, 2012: 12997735.53 Liu Z L, Zuo M J, Qin Y. Remaining useful life prediction of rolling element bearings based on health state assessment[J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2016, 230(2): 314-330.54 Soualhi A, Razik H, Clerc G, et al. Prognosis of bearing failures using hidden markov models and the adaptive neuro-fuzzy inference system[J]. IEEE Transactions on Industrial Electronics, 2016, 61(6): 2864-2874.55 Rabiei M, Modarres M. A recursive Bayesian framework for structural health management using online monitoring and periodic inspections[J]. Reliability Engineering & System Safety, 2017, 112: 154-164.56 宋傳學(xué), 肖峰, 劉思含, 等. 基于無跡卡爾曼濾波的輪轂電機驅(qū)動車輛狀態(tài)觀測[J]. 吉林大學(xué)學(xué)報: 工學(xué)版, 2016, 46(2): 333-339. Song Chuan-xue, Xiao Feng, Liu Si-han, et al. State observation of in-wheel motor-driven vehicles based on unscented Kalman filter[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(2): 333-339.57 Lu F, Ju H F, Huang J Q. An improved extended kalman filter with inequality constraints for gas turbine engine health monitoring[J]. Aerospace Science and Technology, 2016, 58: 36-47.58 Jouin M, Gouriveau R, Hissel D, et al. Particle filter-based prognostics: review, discussion and perspectives[J]. Mechanical Systems and Signal Processing, 2016, 72/73: 2-31.59 Niu Q M, Liu F, Tong Q B, et al. Health condition assessment of ball bearings using TOSELM[J]. Journal of Vibroengineering, 2018, 20(1): 272-282.60 Guo L, Lei Y G, Li N P, et al. Machinery health indicator construction based on convolutional neural networks considering trend burr[J]. Neurocomputing, 2018, 292: 142-150.61 Liu T I, Jolley B. Tool condition monitoring(TCM) using neural networks[J]. International Journal of Advanced Manufacturing Technology, 2015, 78: 1999-2007.62 Ning C, Chen M Y, Zhou D H. Hidden markov model-based statistics pattern analysis for multimode process monitoring: an index-switching scheme[J]. Industrial & Engineering Chemistry Research, 2019, 53(27): 11084-11095.63 張繼軍, 馬登武, 張金春. 基于HMM的電子設(shè)備狀態(tài)監(jiān)測與健康評估[J]. 系統(tǒng)工程與電子技術(shù), 2013, 35(8): 1692-1696. Zhang Ji-jun, Ma Deng-wu, Zhang Jin-chun. Condition monitoring and health assessment of electronic equipment based on HMM[J]. Systems Engineering and Electronic Technology, 2013, 35(8): 1692-1696.64 許麗佳, 王厚軍, 黃建國. CHMM在發(fā)射機狀態(tài)監(jiān)測與健康評估中的應(yīng)用研究[J]. 電子科技大學(xué)學(xué)報, 2016, 39(6): 875-879, 890. Xu Li-jia, Wang Hou-jun, Huang Jian-guo. Application research of CHMM in transmitter condition monitoring and health assessment[J]. Journal of University of Electronic Science and Technology of China, 2016, 39(6): 875-879, 890.65 曾強, 黃政, 魏曙寰. 基于模糊理論和貝葉斯網(wǎng)絡(luò)的燃?xì)廨啓C健康狀態(tài)評估方法[J]. 科學(xué)技術(shù)與工程, 2020, 20(11): 4363-4369. Zeng Qiang, Huang Zheng, Wei Shu-huan. Gas turbine health evaluation method based on fuzzy theory and Bayesian network[J]. Science Technology and Engineering, 2020, 20(11): 4363-4369.66 曾強, 黃政, 魏曙寰. 融合專家先驗知識和單調(diào)性約束的貝葉斯網(wǎng)絡(luò)參數(shù)學(xué)習(xí)方法[J]. 系統(tǒng)工程與電子技術(shù), 2020, 42(3): 646-652. Zeng Qiang, Huang Zheng, Wei Shu-huan. Bayesian network parameter learning method combining expert prior knowledge and monotonic constraints[J]. Systems Engineering and Electronics, 2020, 42(3): 646-652.67 趙文清, 王強, 牛東曉. 基于貝葉斯網(wǎng)絡(luò)的電抗器健康診斷[J]. 電力自動化設(shè)備, 2013, 33(1): 40-43. Zhao Wen-qing, Wang Qiang, Niu Dong-xiao. Reactor health diagnosis based on Bayesian network[J]. Electric Power Automation Equipment, 2013, 33(1): 40-43.68 Iamsumang C, Mosleh A, Modarres M. Monitoring and learning algorithms for dynamic hybrid Bayesian network in on-line system health management applications[J]. Reliability Engineering & System Safety, 2018, 178: 118-129.69 Wang X H, Guo H Z, Wang J B, et al. Predicting the health status of an unmanned aerial vehicles data-link system based on a bayesian network[J]. Sensors, 2018, 18(11): 3916.70 么洪飛, 王宏健, 王瑩, 等. 基于遺傳算法DDBN參數(shù)學(xué)習(xí)的UUV威脅評估[J]. 哈爾濱工程大學(xué)學(xué)報, 2018, 39(12): 1972-1978. Mo Hong-fei, Wang Hong-jian, Wang Ying, et al. UUV threat assessment based on genetic algorithm DDBN parameter learning[J]. Journal of Harbin Engineering University, 2018, 39(12): 1972-1978.71 康守強, 王玉靜, 崔歷歷, 等. 基于CFOA-MKHSVM的滾動軸承健康狀態(tài)評估方法[J]. 儀器儀表學(xué)報, 2016, 37(9): 2029-2035. Kang Shou-qiang, Wang Yu-jing, Cui Li-li, et al. Evaluation method of rolling bearing health status based on CFOA-MKHSVM[J]. Chinese Journal of Scientific Instrument, 2016, 37(9): 2029-2035.72 Wang G F, Xie Q L, Zhang Y C. Tool condition monitoring system based on support vector machine and differential evolution optimization[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 2017, 231(5): 805-813.73 Kong D D, Chen Y J, Li N, et al. Tool wear monitoring based on kernel principal component analysis and v-support vector regression[J]. International Journal of Advanced Manufacturing Technology, 2017, 89: 175-190.74 Sun C, Zhang Z S, Luo X, et al. Support vector machine-based Grassmann manifold distance for health monitoring of viscoelastic sandwich structure with material ageing[J]. Journal of Sound and Vibration, 2016, 368: 249-263.75 武立群, 張亮亮. 基于數(shù)據(jù)挖掘技術(shù)的橋梁結(jié)構(gòu)健康狀態(tài)檢測[J]. 吉林大學(xué)學(xué)報: 工學(xué)版, 2020, 50(2): 565-571. Wu Li-qun, Zhang Liang-liang. Bridge structure health detection based on data mining technology[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 565-571.76 院老虎, 連冬杉, 張亮, 等. 基于密集連接卷積網(wǎng)絡(luò)和支持向量機的飛行器機械部件故障診斷[J]. 吉林大學(xué)學(xué)報: 工學(xué)版, 2021, 51(5): 1635-1641. Yuan Lao-hu, Lian Dong-shan, Zhang Liang, et al. Fault diagnosis of aircraft mechanical components based on densely connected convolutional networks and support vector machines[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1635-1641.77 Xu G W, Liu M, Jiang Z F, et al. Bearing fault diagnosis method based on deep convolutional neural network and random forest ensemble learning[J]. Sensors, 2019, 19(5): 19051088.78 趙東, 臧雪柏, 趙宏偉. 基于果蠅優(yōu)化的隨機森林預(yù)測方法[J]. 吉林大學(xué)學(xué)報: 工學(xué)版, 2017, 47(2): 609-614. Zhao Dong, Zang Xue-bai, Zhao Hong-wei. Random forest prediction method based on fruit fly optimization[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(2): 609-614.79 肖運啟, 王昆朋, 賀貫舉, 等. 基于趨勢預(yù)測的大型風(fēng)電機組運行狀態(tài)模糊綜合評價[J]. 中國電機工程學(xué)報, 2018, 34(13): 2132-2139. Xiao Yun-qi, Wang Kun-peng, He Guan-ju, et al. Fuzzy comprehensive evaluation of large-scale wind turbine operation status based on trend prediction[J]. Proceedings of the CSEE, 2018, 34(13): 2132-2139.80 Li H, Hu Y G, Yang C, et al. An improved fuzzy synthetic condition assessment of a wind turbine generator system[J]. International Journal of Electrical Power & Energy Systems, 2016, 45(1): 468-476.81 李鑫, 劉瑩瑩, 李贛華, 等. 基于模糊變權(quán)原理的衛(wèi)星健康評估方法[J]. 系統(tǒng)工程與電子技術(shù), 2017, 36(3): 476-480. Li Xin, Liu Ying-ying, Li Gan-hua, et al. Satellite health assessment method based on fuzzy variable weight principle[J]. Systems Engineering and Electronic Technology, 2017, 36(3): 476-480.82 國連玉, 李可軍, 梁永亮, 等. 基于灰色模糊綜合評判的高壓斷路器狀態(tài)評估[J]. 電力自動化設(shè)備, 2014, 34(11): 161-167. Guo Lian-yu, Li Ke-jun, Liang Yong-liang, et al. Condition assessment of high-voltage circuit breakers based on grey fuzzy comprehensive evaluation[J]. Electric Power Automation Equipment, 2014, 34(11): 161-167.83 邱文昊, 黃考利, 連光耀, 等. 基于不確定性與重要度的改進(jìn)DSmT健康狀態(tài)評估[J]. 航空動力學(xué)報, 2017, 32(1): 96-104. Qiu Wen-hao, Huang Kao-li, Lian Guang-yao, et al. Improved DSmT health status assessment based on uncertainty and importance[J]. Journal of Aeronautical Dynamics, 2017, 32(1): 96-104.84 王亮, 呂衛(wèi)民, 滕克難, 等. 基于Petri網(wǎng)的復(fù)雜設(shè)備健康狀態(tài)退化分析[J]. 系統(tǒng)工程與電子技術(shù), 2017, 36(10): 1973-1981. Wang Liang, Lv Wei-min, Teng Ke-nan, et al. Analysis of health state degradation of complex equipment based on petri nets[J]. Systems Engineering and Electronic Technology, 2017, 36(10): 1973-1981.85 Khan S, Yairi T. A review on the application of deep learning in system health management[J]. Mechanical Systems & Signal Processing, 2018, 107(1): 241-265.86 Lee J, Wu F, Zhao W, et al. Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications[J]. Mechanical Systems & Signal Processing, 2016, 42(1/2): 314-334.
doi: 10.1155/2018/697248111 董玉亮, 顧煜炯. 基于保局投影與自組織映射的風(fēng)電機組故障預(yù)警方法[J]. 太陽能學(xué)報, 2015, 36(5): 1123-1129. Dong Yu-liang, Gu Yu-jiong. Wind turbine fault warning method based on security bureau projection and self-organizing mapping[J]. Acta Energia Sinica, 2015, 36(5): 1123-1129.12 鐘詩勝, 雷達(dá). 一種可用于航空發(fā)動機健康狀態(tài)預(yù)測的動態(tài)集成極端學(xué)習(xí)機模型[J]. 航空動力學(xué)報, 2016, 29(9): 2085-2090. Zhong Shi-sheng, Lei Da. A dynamic integrated extreme learning machine model that can be used to predict the health status of aero engines[J]. Journal of Aeronautical Dynamics, 2016, 29(9): 2085-2090.13 Tamilselvan P, Wang P F. Failure diagnosis using deep belief learning based health state classification[J]. Reliability Engineering & System Safety, 2020, 115: 124-135.14 Ma M, Sun C, Chen X F. Discriminative deep belief networks with ant colony optimization for health status assessment of machine[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(12): 3115-3125.15 Hanachi H, Liu J, Banerjee A, et al. A physics-based modeling approach for performance monitoring in gas turbine engines[J]. IEEE Transactions on Reliability, 2015, 64(1): 197-205.16 陳煜, 鞠紅飛, 魯峰, 等. 渦噴發(fā)動機健康狀態(tài)的帶約束非線性濾波估計[J]. 推進(jìn)技術(shù), 2016, 37(4): 741-748. Chen Yu, Ju Hong-fei, Lu Feng, et al. Constrained nonlinear filtering estimation of turbojet engine health state[J]. Propulsion Technology, 2016, 37(4): 741-748.17 Yin X J, Wang Z L, Zhang B C, et al. Health estimation of fan based on belief-rule-base expert system in turbofan engine gas-path[J]. Advances in Mechanical Engineering, 2017, 9(3): 1-11.18 Di Maio F, Hu J, Tse P, et al. Ensemble-approaches for clustering health status of oil sand pumps[J]. Expert Systems with Applications, 2020, 39(5): 4847-4859.19 王浩任, 黃亦翔, 趙帥, 等. 基于小波包和拉普拉斯特征值映射的柱塞泵健康評估方法[J]. 振動與沖擊, 2017, 36(22): 45-50. Wang Hao-ren, Huang Yi-xiang, Zhao Shuai, et al. Health assessment method of plunger pump based on wavelet packet and laplace eigenvalue mapping[J]. Journal of Vibration and Shock, 2017, 36(22): 45-50.20 Diez-Olivan A, Pagan J A, Khoa N L D, et al. Kernel-based support vector machines for automated health status assessment in monitoring sensor data[J]. International Journal of Advanced Manufacturing Technology, 2018, 95(1-4): 327-340.21 Arshad M, Islam S M, Khaliq A. Fuzzy logic approach in power transformers management and decision making[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 21(5): 2343-2354.22 王亮, 呂衛(wèi)民, 金永川. 一種多類型證據(jù)的合成評估方法[J]. 控制與決策, 2017, 12(11): 1973-1978. Wang Liang, Lv Wei-min, Jin Yong-chuan. A composite evaluation method for multiple types of evidence[J]. Control and Decision, 2017, 12(11): 1973-1978.23 Cheng J, Yu M. OTHR health status assessment using grey clustering method[C]∥3rd International Conference on Mechanical, Control and Computer Engineering, Huhhot, 2018: 494-497.24 崔建國, 林澤力, 呂瑞, 等. 基于模糊灰色聚類和組合賦權(quán)法的飛機健康狀態(tài)綜合評估方法[J]. 航空學(xué)報, 2014, 35(3): 764-772. Cui Jian-guo, Lin Ze-li, Lv Rui, et al. Comprehensive assessment method of aircraft health status based on fuzzy grey clustering and combined weighting method[J]. Acta Aeronautica Sinica, 2014, 35(3): 764-772.25 Wen J, Gao H L. Degradation assessment for the ball screw with variational autoencoder and kernel density estimation[J]. Advances in Mechanical Engineering, 2018, 10(9): 1-12.26 鄧超, 孫耀宗, 李嶸, 等. 基于隱Markov模型的重型數(shù)控機床健康狀態(tài)評估[J]. 計算機集成制造系統(tǒng), 2013, 19(3): 552-558. Deng Chao, Sun Yao-zong, Li Rong, et al. Health status assessment of heavy CNC machine tools based on hidden markov model[J]. Computer Integrated Manufacturing System, 2013, 19(3): 552-558.27 谷夢瑤, 陳友玲, 王新龍. 多退化變量下基于實時健康度的相似性壽命預(yù)測方法[J]. 計算機集成制造系統(tǒng), 2017, 23(2): 362-372. Gu Meng-yao, Chen You-ling, Wang Xin-long. Similarity life prediction method based on real-time health under multiple degradation variables[J]. Computer Integrated Manufacturing System, 2017, 23(2): 362-372.28 Yang J Y, Zhang Y Y, Zhu Y S. Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension[J]. Mechanical Systems and Signal Processing, 2017, 21(5): 2012-2024.29 Jiang H M, Chen J, Dong G M. Hidden Markov model and nuisance attribute projection based bearing performance degradation assessment[J]. Mechanical Systems and Signal Processing, 2016, 72: 184-205.30 Yin X J, Zhang B C, Zhou Z J, et al. A new health estimation model for CNC machine tool based on infinite irrelevance and belief rule base[J]. Microelectronics Reliability, 2018, 84: 187-196.31 李巍華, 李靜, 張紹輝. 連續(xù)隱半馬爾科夫模型在軸承性能退化評估中的應(yīng)用[J]. 振動工程學(xué)報, 2016, 27(4): 613-620. Li Wei-hua, Li Jing, Zhang Shao-hui. Application of continuous hidden semi-Markov model in bearing performance degradation assessment[J]. Journal of Vibration Engineering, 2016, 27(4): 613-620.32 Liao Z R, Gao D, Lu Y, et al. Multi-scale hybrid HMM for tool wear condition monitoring[J]. International Journal of Advanced Manufacturing Technology, 2016, 84: 2437-2448.33 Lu C, Li T Y, Liu H M. Online milling tool condition monitoring with a single continuous hidden Markov models approach[J]. Journal of Vibroengineering, 2017, 16(5): 2448-2457.34 Yu J S, Liang S, Tang D Y, et al. A weighted hidden Markov model approach for continuous-state tool wear monitoring and tool life prediction[J]. International Journal of Advanced Manufacturing Technology, 2017, 91: 201-211.35 Kong D D, Chen Y J, Li N. Gaussian process regression for tool wear prediction[J]. Mechanical Systems and Signal Processing, 2018, 104: 556-574.36 Kong D D, Chen Y J, Li N. Hidden semi-markov model-based method for tool wear estimation in milling process[J]. International Journal of Advanced Manufacturing Technology, 2017, 92: 3647-3657.37 Kong D D, Chen Y J, Li N. Force-based tool wear estimation for milling process using gaussian mixture hidden markov models[J]. International Journal of Advanced Manufacturing Technology, 2017, 92: 2853-2865.38 劉美芳, 余建波, 尹紀(jì)庭. 基于貝葉斯推論和自組織映射的軸承性能退化評估方法[J]. 計算機集成制造系統(tǒng), 2018, 18(10): 269-278. Liu Mei-fang, Yu Jian-bo, Yin Ji-ting. Bearing performance degradation assessment method based on bayesian inference and self-organizing map[J]. Computer Integrated Manufacturing System, 2018, 18(10): 269-278.39 Guo L, Li N P, Jia F, et al. A recurrent neural network based health indicator for remaining useful life prediction of bearings[J]. Neurocomputing, 2017, 240: 98-109.40 Khoualdia T, Hadjadj A E, Bouacha K, et al. Multi-objective optimization of ANN fault diagnosis model for rotating machinery using grey rational analysis in taguchi method[J]. International Journal of Advanced Manufacturing Technology, 2017, 89: 3009-3020.41 Jiang H M, Chen J, Dong G M, et al. Study on hankel matrix-based SVD and its application in rolling element bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2015, 52/53: 338-359.42 Lee G Y, Kim M, Quan Y J, et al. Machine health management in smart factory: a review[J]. Journal of Mechanical Science and Technology, 2018, 32(3): 987-1009.43 Luo S R, Cheng J S, Ao H. Application of LCD-SVD technique and CRO-SVM method to fault diagnosis for roller bearing[J]. Shock and Vibration, 2015, 2015: 847802.44 Yuan N Q, Yang W L, Kang B, et al. Signal fusion-based deep fast random forest method for machine health assessment[J]. Journal of Manufacturing Systems, 2018, 48: 1-8.45 李洪雪, 李世武, 孫文財, 等. 重型危險品半掛列車行駛工況的構(gòu)建[J]. 吉林大學(xué)學(xué)報: 工學(xué)版, 2021, 51(5): 1700-1707. Li Hong-xue, Li Shi-wu, Sun Wen-cai, et al. Construction of driving conditions of heavy-duty dangerous goods semitrailer trains[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1700-1707.46 Benkedjouh T, Medjaher K, Zerhouni N, et al. Health assessment and life prediction of cutting tools based on support vector regression[J]. Journal of Intelligent Manufacturing, 2015, 26(2): 213-223.47 徐宇亮, 孫際哲, 陳西宏, 等. 電子設(shè)備健康狀態(tài)評估與故障預(yù)測方法[J]. 系統(tǒng)工程與電子技術(shù), 2015, 34(5): 1068-1072. Xu Yu-liang, Sun Ji-zhe, Chen Xi-hong, et al. Methods of electronic equipment health status assessment and failure prediction[J]. Systems Engineering and Electronic Technology, 2015, 34(5): 1068-1072.48 Ma M, Chen X F, Zhang X L, et al. Locally linear embedding on grassmann manifold for performance degradation assessment of bearings[J]. IEEE Transactions on Reliability, 2017, 66(2): 467-477.49 Li F, Chyu M K K, Wang J X, et al. Life grade recognition of rotating machinery based on Supervised orthogonal linear local tangent space alignment and optimal supervised fuzzy c-means clustering[J]. Measurement, 2015, 73: 384-400.50 Liao L X, Jin W J, Pavel R. Enhanced restricted boltzmann machine with prognosability regularization for prognostics and health assessment[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 7076-7083.51 Medjaher K, Tobon-Mejia D A, Zerhouni N. Remaining useful life estimation of critical components with application to bearings[J]. IEEE Transactions on Reliability, 2019, 61(2): 292-302.52 Wang T. Bearing life prediction based on vibration signals: a case study and lessons learned[C]∥IEEE Conference on Prognostics and Health Management, Denver, 2012: 12997735.53 Liu Z L, Zuo M J, Qin Y. Remaining useful life prediction of rolling element bearings based on health state assessment[J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2016, 230(2): 314-330.54 Soualhi A, Razik H, Clerc G, et al. Prognosis of bearing failures using hidden markov models and the adaptive neuro-fuzzy inference system[J]. IEEE Transactions on Industrial Electronics, 2016, 61(6): 2864-2874.55 Rabiei M, Modarres M. A recursive Bayesian framework for structural health management using online monitoring and periodic inspections[J]. Reliability Engineering & System Safety, 2017, 112: 154-164.56 宋傳學(xué), 肖峰, 劉思含, 等. 基于無跡卡爾曼濾波的輪轂電機驅(qū)動車輛狀態(tài)觀測[J]. 吉林大學(xué)學(xué)報: 工學(xué)版, 2016, 46(2): 333-339. Song Chuan-xue, Xiao Feng, Liu Si-han, et al. State observation of in-wheel motor-driven vehicles based on unscented Kalman filter[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(2): 333-339.57 Lu F, Ju H F, Huang J Q. An improved extended kalman filter with inequality constraints for gas turbine engine health monitoring[J]. Aerospace Science and Technology, 2016, 58: 36-47.58 Jouin M, Gouriveau R, Hissel D, et al. Particle filter-based prognostics: review, discussion and perspectives[J]. Mechanical Systems and Signal Processing, 2016, 72/73: 2-31.59 Niu Q M, Liu F, Tong Q B, et al. Health condition assessment of ball bearings using TOSELM[J]. Journal of Vibroengineering, 2018, 20(1): 272-282.60 Guo L, Lei Y G, Li N P, et al. Machinery health indicator construction based on convolutional neural networks considering trend burr[J]. Neurocomputing, 2018, 292: 142-150.61 Liu T I, Jolley B. Tool condition monitoring(TCM) using neural networks[J]. International Journal of Advanced Manufacturing Technology, 2015, 78: 1999-2007.62 Ning C, Chen M Y, Zhou D H. Hidden markov model-based statistics pattern analysis for multimode process monitoring: an index-switching scheme[J]. Industrial & Engineering Chemistry Research, 2019, 53(27): 11084-11095.63 張繼軍, 馬登武, 張金春. 基于HMM的電子設(shè)備狀態(tài)監(jiān)測與健康評估[J]. 系統(tǒng)工程與電子技術(shù), 2013, 35(8): 1692-1696. Zhang Ji-jun, Ma Deng-wu, Zhang Jin-chun. Condition monitoring and health assessment of electronic equipment based on HMM[J]. Systems Engineering and Electronic Technology, 2013, 35(8): 1692-1696.64 許麗佳, 王厚軍, 黃建國. CHMM在發(fā)射機狀態(tài)監(jiān)測與健康評估中的應(yīng)用研究[J]. 電子科技大學(xué)學(xué)報, 2016, 39(6): 875-879, 890. Xu Li-jia, Wang Hou-jun, Huang Jian-guo. Application research of CHMM in transmitter condition monitoring and health assessment[J]. Journal of University of Electronic Science and Technology of China, 2016, 39(6): 875-879, 890.65 曾強, 黃政, 魏曙寰. 基于模糊理論和貝葉斯網(wǎng)絡(luò)的燃?xì)廨啓C健康狀態(tài)評估方法[J]. 科學(xué)技術(shù)與工程, 2020, 20(11): 4363-4369. Zeng Qiang, Huang Zheng, Wei Shu-huan. Gas turbine health evaluation method based on fuzzy theory and Bayesian network[J]. Science Technology and Engineering, 2020, 20(11): 4363-4369.66 曾強, 黃政, 魏曙寰. 融合專家先驗知識和單調(diào)性約束的貝葉斯網(wǎng)絡(luò)參數(shù)學(xué)習(xí)方法[J]. 系統(tǒng)工程與電子技術(shù), 2020, 42(3): 646-652. Zeng Qiang, Huang Zheng, Wei Shu-huan. Bayesian network parameter learning method combining expert prior knowledge and monotonic constraints[J]. Systems Engineering and Electronics, 2020, 42(3): 646-652.67 趙文清, 王強, 牛東曉. 基于貝葉斯網(wǎng)絡(luò)的電抗器健康診斷[J]. 電力自動化設(shè)備, 2013, 33(1): 40-43. Zhao Wen-qing, Wang Qiang, Niu Dong-xiao. Reactor health diagnosis based on Bayesian network[J]. Electric Power Automation Equipment, 2013, 33(1): 40-43.68 Iamsumang C, Mosleh A, Modarres M. Monitoring and learning algorithms for dynamic hybrid Bayesian network in on-line system health management applications[J]. Reliability Engineering & System Safety, 2018, 178: 118-129.69 Wang X H, Guo H Z, Wang J B, et al. Predicting the health status of an unmanned aerial vehicles data-link system based on a bayesian network[J]. Sensors, 2018, 18(11): 3916.70 么洪飛, 王宏健, 王瑩, 等. 基于遺傳算法DDBN參數(shù)學(xué)習(xí)的UUV威脅評估[J]. 哈爾濱工程大學(xué)學(xué)報, 2018, 39(12): 1972-1978. Mo Hong-fei, Wang Hong-jian, Wang Ying, et al. UUV threat assessment based on genetic algorithm DDBN parameter learning[J]. Journal of Harbin Engineering University, 2018, 39(12): 1972-1978.71 康守強, 王玉靜, 崔歷歷, 等. 基于CFOA-MKHSVM的滾動軸承健康狀態(tài)評估方法[J]. 儀器儀表學(xué)報, 2016, 37(9): 2029-2035. Kang Shou-qiang, Wang Yu-jing, Cui Li-li, et al. Evaluation method of rolling bearing health status based on CFOA-MKHSVM[J]. Chinese Journal of Scientific Instrument, 2016, 37(9): 2029-2035.72 Wang G F, Xie Q L, Zhang Y C. Tool condition monitoring system based on support vector machine and differential evolution optimization[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 2017, 231(5): 805-813.73 Kong D D, Chen Y J, Li N, et al. Tool wear monitoring based on kernel principal component analysis and v-support vector regression[J]. International Journal of Advanced Manufacturing Technology, 2017, 89: 175-190.74 Sun C, Zhang Z S, Luo X, et al. Support vector machine-based Grassmann manifold distance for health monitoring of viscoelastic sandwich structure with material ageing[J]. Journal of Sound and Vibration, 2016, 368: 249-263.75 武立群, 張亮亮. 基于數(shù)據(jù)挖掘技術(shù)的橋梁結(jié)構(gòu)健康狀態(tài)檢測[J]. 吉林大學(xué)學(xué)報: 工學(xué)版, 2020, 50(2): 565-571. Wu Li-qun, Zhang Liang-liang. Bridge structure health detection based on data mining technology[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 565-571.76 院老虎, 連冬杉, 張亮, 等. 基于密集連接卷積網(wǎng)絡(luò)和支持向量機的飛行器機械部件故障診斷[J]. 吉林大學(xué)學(xué)報: 工學(xué)版, 2021, 51(5): 1635-1641. Yuan Lao-hu, Lian Dong-shan, Zhang Liang, et al. Fault diagnosis of aircraft mechanical components based on densely connected convolutional networks and support vector machines[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1635-1641.77 Xu G W, Liu M, Jiang Z F, et al. Bearing fault diagnosis method based on deep convolutional neural network and random forest ensemble learning[J]. Sensors, 2019, 19(5): 19051088.78 趙東, 臧雪柏, 趙宏偉. 基于果蠅優(yōu)化的隨機森林預(yù)測方法[J]. 吉林大學(xué)學(xué)報: 工學(xué)版, 2017, 47(2): 609-614. Zhao Dong, Zang Xue-bai, Zhao Hong-wei. Random forest prediction method based on fruit fly optimization[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(2): 609-614.79 肖運啟, 王昆朋, 賀貫舉, 等. 基于趨勢預(yù)測的大型風(fēng)電機組運行狀態(tài)模糊綜合評價[J]. 中國電機工程學(xué)報, 2018, 34(13): 2132-2139. Xiao Yun-qi, Wang Kun-peng, He Guan-ju, et al. Fuzzy comprehensive evaluation of large-scale wind turbine operation status based on trend prediction[J]. Proceedings of the CSEE, 2018, 34(13): 2132-2139.80 Li H, Hu Y G, Yang C, et al. An improved fuzzy synthetic condition assessment of a wind turbine generator system[J]. International Journal of Electrical Power & Energy Systems, 2016, 45(1): 468-476.81 李鑫, 劉瑩瑩, 李贛華, 等. 基于模糊變權(quán)原理的衛(wèi)星健康評估方法[J]. 系統(tǒng)工程與電子技術(shù), 2017, 36(3): 476-480. Li Xin, Liu Ying-ying, Li Gan-hua, et al. Satellite health assessment method based on fuzzy variable weight principle[J]. Systems Engineering and Electronic Technology, 2017, 36(3): 476-480.82 國連玉, 李可軍, 梁永亮, 等. 基于灰色模糊綜合評判的高壓斷路器狀態(tài)評估[J]. 電力自動化設(shè)備, 2014, 34(11): 161-167. Guo Lian-yu, Li Ke-jun, Liang Yong-liang, et al. Condition assessment of high-voltage circuit breakers based on grey fuzzy comprehensive evaluation[J]. Electric Power Automation Equipment, 2014, 34(11): 161-167.83 邱文昊, 黃考利, 連光耀, 等. 基于不確定性與重要度的改進(jìn)DSmT健康狀態(tài)評估[J]. 航空動力學(xué)報, 2017, 32(1): 96-104. Qiu Wen-hao, Huang Kao-li, Lian Guang-yao, et al. Improved DSmT health status assessment based on uncertainty and importance[J]. Journal of Aeronautical Dynamics, 2017, 32(1): 96-104.84 王亮, 呂衛(wèi)民, 滕克難, 等. 基于Petri網(wǎng)的復(fù)雜設(shè)備健康狀態(tài)退化分析[J]. 系統(tǒng)工程與電子技術(shù), 2017, 36(10): 1973-1981. Wang Liang, Lv Wei-min, Teng Ke-nan, et al. Analysis of health state degradation of complex equipment based on petri nets[J]. Systems Engineering and Electronic Technology, 2017, 36(10): 1973-1981.85 Khan S, Yairi T. A review on the application of deep learning in system health management[J]. Mechanical Systems & Signal Processing, 2018, 107(1): 241-265.86 Lee J, Wu F, Zhao W, et al. Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications[J]. Mechanical Systems & Signal Processing, 2016, 42(1/2): 314-334.
相關(guān)知識
鋰離子電池安全狀態(tài)評估研究進(jìn)展
健康狀態(tài)評估
保健飲料市場監(jiān)測及發(fā)展趨勢研究報告.doc
健康管理行業(yè)發(fā)展現(xiàn)狀及前景趨勢研究分析
區(qū)域健康發(fā)展力評估研究報告
電池壽命預(yù)測與健康狀態(tài)評估技術(shù)研究
益生元研究現(xiàn)狀及發(fā)展趨勢
2024年健康養(yǎng)生行業(yè)現(xiàn)狀及發(fā)展趨勢預(yù)測
中國健康陶瓷產(chǎn)業(yè)發(fā)展現(xiàn)狀及發(fā)展趨勢
智慧健康監(jiān)測設(shè)備行業(yè)發(fā)展趨勢及市場現(xiàn)狀分析
網(wǎng)址: 機電裝備健康狀態(tài)評估研究進(jìn)展及發(fā)展趨勢 http://m.u1s5d6.cn/newsview1393589.html
推薦資訊
- 1發(fā)朋友圈對老公徹底失望的心情 12775
- 2BMI體重指數(shù)計算公式是什么 11235
- 3補腎吃什么 補腎最佳食物推薦 11199
- 4性生活姿勢有哪些 盤點夫妻性 10428
- 5BMI正常值范圍一般是多少? 10137
- 6在線基礎(chǔ)代謝率(BMR)計算 9652
- 7一邊做飯一邊躁狂怎么辦 9138
- 8從出汗看健康 出汗透露你的健 9063
- 9早上怎么喝水最健康? 8613
- 10五大原因危害女性健康 如何保 7828
資訊熱點排名
資訊熱點